

Statische Berechnung

Static Analysis

Datum: 13.09.2021 Lieferschein-Nr.: 2021091304 Kunden-Nr.: 51039 Sachbearbeiter/-in: Andreas Fritz

Auftraggeber:

Poitgo Videowall Germany GmbH

Herm Tobias Jandausch Schwärzenberger Str. 7

68309 Mannheim

Projekt: 2021-0097

Picled LED Module und Traversen-Tragwerk

Pos. 3 - Traversentragwerk

Nur gültig und rechtsverbindlich als Original mit Stempel und Unterschrift - Kopien sind rechtswidrig! Only valid and binding as an original document with stamp and signature - copies are illegal!

> Expo Engineering GmbH Suerkamp 14 D-59302 Oelde

Fon: +49 (0) 2520-93162-0 Fax: +49 (0) 2520-93162-210 www.expo-engineering.de

Projektname: Pos-3 Traversentragwerk

Pfad: C:\Use

 $\label{lem:c:users} $$C:\Users\stefan.rybarz\Projekte\LEDitgo\2021-0097\ LED\ Modul\ Picled3\ POS3\02\ Berechnungen\2021-0097\ POS-3\ Traversentragwerk.docx$

Inhaltsverzeichnis

1 Aufbau- und Betrie	ebshinweise	3
2 Objektbeschreibur	ng	5
3 Verwendete Materi	ialien	6
4 Berechnungsgrund	dlagen	6
	/ Eigengewichte	
5.2.1 Vertikale Verk	ehrslasten	7
	erkehrslasten	
6 Schnittgrößenermi	ittlung	10
7 Nachweise der Bau	uteiltragfähigkeit	11
7.1 Naxpro Truss FD)33	11
7.1.1 Bemessungss	schnittgrößen	12
7.1.2 Nachweise Na	axpro FD33Ang:///Ang://	
7.2 Seile / Anschlagr	mittel (Kettenzug)	<i>≒.</i> 13
7.3 Naxpro Truss FD	expro FD33	13
7.3.1 Bemessungss	schnittgroisen	14
7.3.2 Waxiiilale Gui	ar-/ Strobonkrat	14
7.3.3 Maximale Que	rtkrafter-/ Strebenkraftckbeanspruchung	15
7.4 Hoodsoction ED?	31/HD31	16
7.5 Nachweis Diagor	nale FD34	17
7.6 Truss Windbreak	er (Riggatec) 🛴	18
7.7 Spindelaufnahme	e	20
7.8 Spindeln		21
7.9 Nachweis Hinge	- Aufbauphase	_k @22
8 Nachweise der Lag	nale FD34er (Riggatec)	23
8.1 Erlauterungen		23
	gegen Abheben (Kippen)	
	gegen Gleiten	
•	essung	
9 Schlussbemerkung	gen	28

Projektname: Pos-3 Traversentragwerk

1 Aufbau- und Betriebshinweise

Eine fachgerechte Montage und Betrieb der Konstruktion sind Voraussetzung für diese statische Berechnung.

Unbeachtet allgemein gültiger Sicherheitsanforderungen sind aus statischer Hinsicht folgende Hinweise zu beachten:

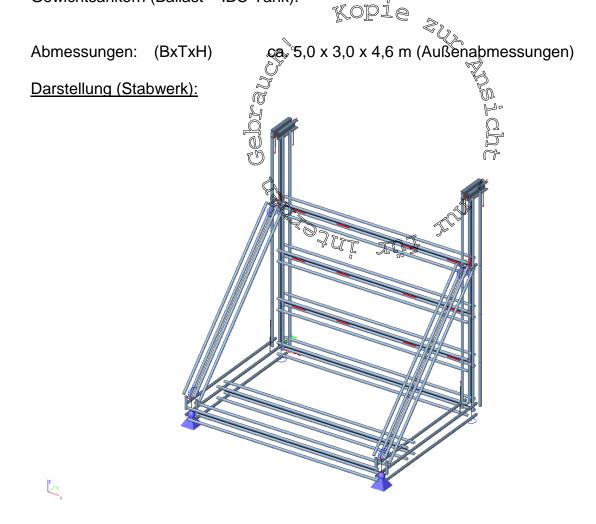
- Die Konstruktion kann in sämtlichen Gebieten im Binnenland aufgestellt werden, in denen die Basis-Windgeschwindigkeit gemäß DIN EN 1991-1-4/NA ≤ 25,0 m/s beträgt und die Topografie einem Mischprofil der Geländekategorien II und III entsprechen.
 - In Deutschland entspricht das in Windzone I den Höhenlagen bis 1000 m ü. NN und in Windzone II den Höhenlagen bis 800 m ü. NN.
- Es erfolgt keine Unterscheidung der Betriebszustände in Abhängigkeit der Windgeschwindigkeiten. Die Konstruktion kann in den ausgewiesenen Windzonen ohne zusätzliche Verstärkungsmaßnahmen aufgestellt werden.
- Die Konstruktion ist auf einem ebenen und ausreichend tragfähigen Untergrund zu errichten. Ggf. sind ausgleichende / lastverteilende Maßnahmen zu treffen.
- Für die korrekte Verankerung der Konstruktion sind die Hinweise im Kapitel "Nachweis der Lagesicherheit" zu beachten.
- Es sind nur original (Traversen-)Bauteile der Firma Naxpro zu verwenden.
- Sämtliche Verbindungen sind gegen selbständiges Lösen zu sichern.
- Alle Anschlag- und Tragmittel müssen von ausgebildeten Personen geplant werden. Es ist ein besonderes Augenmerk darauf zu legen die Abgriffe der Anschlagmittel in unmittelbarer Nähe der vertikalen Diagonalen an den Gurtrohren zu platzieren.
- An rechtwinkligen Kreuzungspunkten von Traversen dürfen ausschließlich Cornerblöcke (Boxcorner) verwende werden.
- Weiter Angaben im Dokument sind ebenfalls zu beachten.
- Die Lactabtrag zu befestigen. Ein Bendeln und Verwinden der LED-Wand ist konstruktiv zu verhindern
- Die LED Module selbst und deren Unterkonstruktion sind kein Bestandteil dieser statischen Berechnung. Eine ausreichende Tagfähigkeit wird vorausgesetzt und st vor Baubeginn verantwortlich zu prüfen.

Allgemeine Hinweise:

Projektname: Pos-3 Traversentragwerk

- Es wird auf die Hinweise in der igvw-Schrift SQ P1 bezüglich Schutzpotentialausgleich, Blitzschutz und Mängelprüfung der verwendeten Bauteile verwiesen.
- Die Ausführungsklasse ist EXC2 (SC1) gemäß EN 1090. Bei kaltgeformten Hohlprofilen nach EN 10219, die nicht die in Tabelle 4.2 (DIN EN 1993-1-8:2010-12) festgelegten Grenzen erfüllen, kann vorausgesetzt werden, dass sie diese Grenzen erfüllen, sofern diese Profile eine Dicke aufweisen, die nicht größer als 12,5 mm und Al-beruhigt sind mit einer Qualität von J2H, K2H, MH, MLH, NH oder NLH und ferner C < 0,18 %, P < 0,020 % und S < 0,012 % erfüllen.</p>
- Die herstellerseitigen Aufbau und Betriebshinweise sind ebenfalls zu berücksichtigen.
- Sämtliche verwendeten Bauprodukte müssen CE-und (in Deutschland) Ügekennzeichnet sein.

Projektname: Pos-3 Traversentragwerk


2 Objektbeschreibung

Bei der vorliegenden Konstruktion handelt es sich um ein Tragwerk für eine LED-Wand. Das Tragwerk wird aus modularen Aluminiumgitterträgern der Firma Naxpro (System FD33 und FD34) gebildet und besteh aus einem horizontalen Traversen Rahmen auf diesen zwei Towern mit drei Quertraversen und aufgesetzter Headsection aufgeständert werden. Die Twer werden über zwei diagonale Traversen zum Rahmen ausgesteift.

Über die Tower wird nachdem alle Traversenteile montiert und die diagonalen Aussteifungen kraftschlüssig in der Konstruktion angebunden sind, mittels Motorkettenzug eine LED Wand an das Tragwerk angehangen. Über sogenannte "Windbraker" der Firma Riggatec werden die LED Module an querverlaufenden Traversen kraftschlüssig angebunden und gegen horizontale Lasten in der Lage gesichert. Die Oberkannte der LED-Wand wird maximal auf eine Höhe von 4,1m gehoben.

Der Kettenzug ist hinter der LED-Wand am Traversenrahmen konstruktiv und kraftschlüssig befestigt.

Die Lagesicherung erfolgt über Ausleger an der Sockelkonstruktion mittels Gewichtsankern (Ballast – IBC-Tank).

Projektname: Pos-3 Traversentragwerk

3 Verwendete Materialien

Aluminiumlegierung

Érläuterung (f。 / f。ʎ/f。ˌнʌz / fu,нʌz // Beulklasse) [kN/cm²]

EN AW 6082 T6

(25,0 / 29,0 // 12,5 / 18,5 // A) EP, ET t ≤ 5 mm

Stahl

Erläuterung (f_v / f_u) [kN/cm²]

8.8	(64,0 / 80,0)
) 10.9	(90,0 / 100,0)
2 42CrMo4	(90,0 / 100,0)
*0 §235 DJUT	(23,5 / 36,0)
1 Rerechnungsgrundlage	n.

4 Berechnungsgrundlagen

Allgemeine Literatur:

- Wendehorst, Bautechnische Zahlentafeln
- Schneider, Bautabellen für Ingenieure

Grundlagen des konstruktiven Ingenieurwesens:

- DIN EN 1991-1 Eurocode 1: Einwirkungen auf Tragwerke (12/2010)
- DIN EN 1993-1 Eurocode 3: Bemessung und Konstruktion von Stahlbauten (12/2010)
- DIN EN 1999-1 Eurocode 9: Bemessung und Konstruktion von Aluminiumtragwerken (05/2010)
- DIN EN 13814 Fliegende Bauten und Anlagen für Veranstaltungsplätze und Vergnügungsparks (2005-06)

5 Lastannahmen

5.1 Ständige Lasten / Eigengewichte

Gitterträger

Werden vom Programm als Ersatzdichte berücksichtigt.

FD 33: = 0.044 kN / m $A = 9.06 \text{ cm}^2$ g $= 0.044 / 9.06 * 10^6 = 4857 \text{ kg/m}^3$ ρ_{ers} = 0.058 kN / mFD 34: $A = 12,06 \text{ cm}^2$ g $= 0.058 / 12.06 * 10^6 = 4808 \text{ kg/m}^3$ ρ_{ers}

Profile

Werden vom Programm anhand ihrer Material- und Querschnittseigenschaften berücksichtigt.

Total:

 $G_{ges} = 3.0 \text{ kN}$ <> 300 kg

Projektname: Pos-3 Traversentragwerk

Ballast

Gesamt $G_{ges} = 3000 \text{ kg} <> 30,0 \text{ kN}$ über die hintern Quertraversen L=4,29m gleichverteilt: g = 30,0 / 4,29 / 2 = 3,497 kN/m

5.2. Wertikale Verkehrslasten

LED-Module inkl. Haniging-Brackets

30 Module (1,0x0,5m): a P_i = 1 kN gesamt P = 30 * 0,11 = 3,3 kN 10 Brackets a P_i = 0,075 kN 2 gesamt P = 10 * 0,075 = 0,75 kN

gleichverteilt über Querträger (FD33) L = 5,0m: p = (3,3+0,75) / 5,0=0,81 kN/m $P_{ges}=3,3+0,75=4,05$ kN je Kettenzug:

 $P_i = 4,05 / 2 = 2,03$

Generell wird für alle gehobenen Lasten die dynamische Trägheitskraft mit berücksichtigt:

Die Lasten werden beim Bewegen durch den Hublastbeiwert nach DIN 15018 Teil 1 erhöht.

Hubklasse: H <=H2 (Lagerkrane mit unterbrochenem Betrieb)

Hubgeschwindigkeit: v <= 8 m / min

Hublastbeiwert: $v \le 1.2 + 0.0044 * 8 = 1.24$

DGUV 17 fordert nur v = 1,2

inkl. Hublastbeiwert und Eigengewicht FD33 je Strang:

 $P_{i,res} = 1.2 * (2.03 + 5.0 * 0.044 / 2) = 2.57 kN$

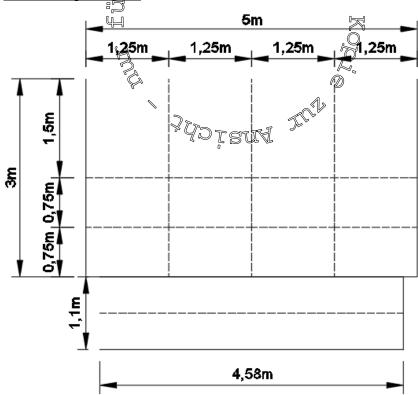
2 x Kettenzug D8+ 500kg

 $P_i = 35.0 \text{ kg} <> 0.35 \text{ kN}$ $P_{ges} = 2 * 0.35 = 0.7 \text{ kN}$

5.2.2 Horizontale Verkehrslasten

<u>keine</u>

5.3 Windlasten


Staudruck

Projektname: Pos-3 Traversentragwerk

Windlasten nach Einstellen des Betriebszustandes gemäß DIN EN 13814 (Fliegende Bauten, 2005-06) in Verbindung mit MLTB-03-2011 Anlage 2.7/23 und DIN EN 1991-1-4 (Windlasten, 2010-12).

<u>Lasteinzugsflächen</u>

Wind auf LED-Module

aerodynamischer Kraftbeiwert:

$$c_p = 1,3$$

$$W_1 = 1.3 * 1.5 * 1.25 * 0.41 = 1.0 kN$$

 $W_2 = 1.3 * 0.75 * 1.25 * 0.41 = 0.5 kN$

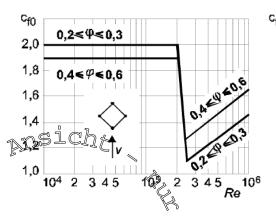
Wind auf Sockel

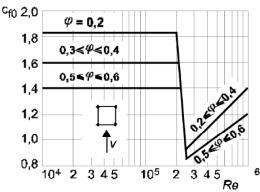
aerodynamischer Kraftbeiwert:

$$c_{p} = 1.3$$

gleichverteilt über die unteren Querträger:

$$w = 1.3 * 1.1 / 2 * 0.41 = 0.293 kN/m$$




Projektname: Pos-3 Traversentragwerk

Wind auf FD33

gemäß DIN EN 1991-1-4 - 7.11

A = 2 * 0,05 + 0,02 / cos 45° = 1283 cm² / m = 0,1283 m² / m A_c = 29,0 cm * 100 cm / m = 0,29 m² / m ϕ = A / A_c = 1283 / 2900 = 0,44

(7.26)

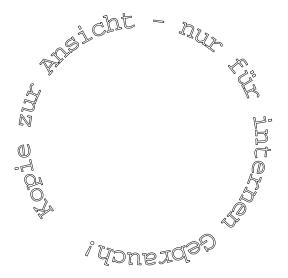
Beiwert Konstant bis Rex 2E05 -> v = 2E05 * 15E-06 / 0,05m = 60 m/s (q=2,25)

Außer Betrieb WZ2-Binnenland h < 7m

Stiele:

 $c_{f0} = c_f = 1.90$ w = 1.90 * 0.41 * 0.1283 = 0.100 kN / m s. Bild 7.35

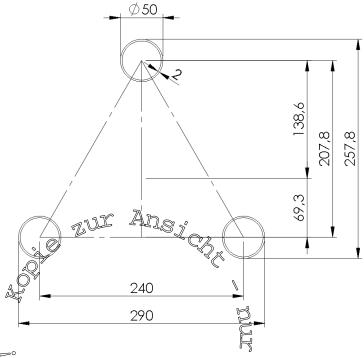
wird now Dowerkopf angesetzt:


 $W_i = 0.1 * 5.0 / 2 = 0.25 kN$

Projektname: Pos-3 Traversentragwerk

6 Schnittgrößenermittlung

Die Schnittgrößen werden in einer dreidimensionalen Stabwerkberechnung mit Hilfe der Software SCIA Engineer ermittelt. Die Eingabe der Struktur und der Belastungen sowie die Ausgabe der Ergebnisse sind im Anhang als EDV-Ausdruck beigefügt.



Projektname: Pos-3 Traversentragwerk

7 Nachweise der Bauteiltragfähigkeit

Naxpro Truss FD33 7.1

ENAW 6082 T6	ENAW 6082 T6
$A = 3,02 \text{ cm}^2$	$A = 1,13 \text{ cm}^2$
$I = 8,70 \text{ cm}^4$	$I = 0,46 \text{ cm}^4$
$W = 3,48 \text{ cm}^3$	$W = 0,46 \text{ cm}^3$
i = 1,70 cm	i = 0,64 cm

 $_{\rm ges} = 9,06 \; {\rm cm}^2$ $I_{y,q} = 895,8 \text{ cm}^4$ $I_{z,ges} = 894,0 \text{ cm}^4$ $W_{y,ges} = 54,8 \text{ cm}^3$ $W_{z,ges} = 61,7 \text{ cm}^3$ $i_{y,ges} = 9,93 \text{ cm}$

 $i_{z,ges} = 9,93 \text{ cm}$

 $S_v = 3655,0 \text{ kN}$ (für $\alpha = 39^\circ$)

Projektname: Pos-3 Traversentragwerk

(Verbinder)

7.1.1 Bemessungsschnittgrößen

Zusammenfassung der Bemessungsschnittgrößen gemäß Systemstatik. Die Systemstatik kann zu Prüfzwecken angefordert werden.

 $N_{ch,Rd} = 35$ 1kN

 $N_{br,v,Rd} = 13,39 \text{ kN}$ $N_{br,h,Rd} = 13,39 \text{ kN}$

Am Anschluss:

 $N_{Rd} = 107, 19 \text{kN}$ $M_{y,Rd} = 7,43 \text{ kNm}$ $M_{z,Rd} = 8,57 \text{ kNm}$

Innerhalb der Strecke:

 $N_{Rd} = 151,05 \text{ kN}$ $M_{z,Rd} = 12,08 \text{ kNm}$ $M_{z,Rd} = 12,08 \text{ kNm}$

 $V_{y,Rd} = 8,43 \text{ kN}$ $V_{z,Rd} = 14,60 \text{ kN}$

7.1.2 Nachweise Naxpro FD33

Bemessungswerte, inkl. Hublastbeiwert 1,2

Maximale Biegung

$$\begin{aligned} &M_{y,Ed} = 1.2 * (1.5 * 0.81 + 1.35 * 0.044) * 5.0^{2} / 8 = 4.78 \text{ kN} \\ &\text{max } M_{y,Ed} = 3.98 \text{ kNm} &< 7.43 \text{ kNm} = M_{y,Rd} \end{aligned}$$

maximale Querkraft:

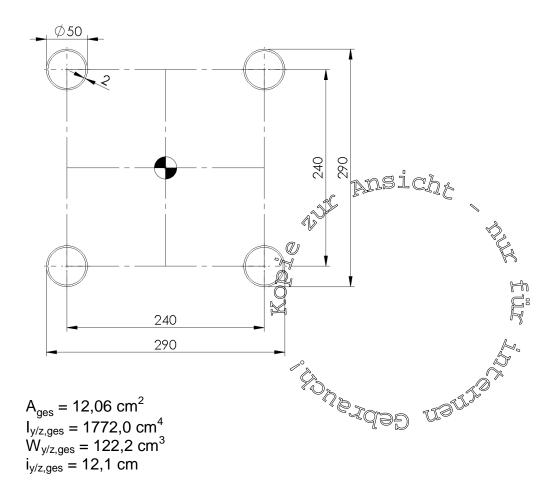
$$V_{z,Ed} = 1.2 * (1.5 * 0.81 + 1.35 * 0.044) * 5.0 / 2 = 3.82 \text{ kN} \\ max \ V_{z,Ed} = 3.82 \text{ kN} \\ < 14.60 \text{ kN } V_{z,Rd}$$

Ein Querkrafteinfluss aus Torsionsbelastung ist nicht relevant.

Projektname: Pos-3 Traversentragwerk

7.2 Seile / Anschlagmittel (Kettenzug)

charakteristisch, inkl. Hublastbeiwert 1,2


 $max N_{Ek} = 2,57 <> 260 kg$ < 500 kg (Kettenzug D8+500kg)

Die Anschlagmittel sind nach den Erläuterungen der DGUV Information 215-313 (BGI 810-3) zur DGUV Vorschrift 17 (UVV BGV-C1) von Fachpersonal zu dimensionieren, zu planen und deren Installation zu überwachen.

7.3 Naxpro Truss FD34

 Gurt Ø50x2
 Strebe Ø20x2

 ENAW 6082 T6
 ENAW 6082 T6

Projektname: Pos-3 Traversentragwerk

7.3.1 Bemessungsschnittgrößen

Zusammenfassung der Bemessungsschnittgrößen gemäß Systemstatik. Die Systemstatik kann zu Prüfzwecken angefordert werden.

 $N_{ch.Rd} = 35,71 \text{ kN}$ (Verbinder)

 $N_{ch,Rd} = 50,35 \text{ kN}$ (Knicken mit WEZ)

 $N_{br,v,Rd} = 13,39 \text{ kN}$ $N_{br,h,Rd} = 13,39 \text{ kN}$

Am Anschluss:

 $N_{Rd} = 142,84 \text{ kN}$ $M_{v,Rd} = 17,14 \text{ kNm}$ $M_{z,Rd} = 17,14 \text{ kNm}$

Innerhalb der Strecke:

 $N_{Rd} = 201,40 \text{ kN}$ $M_{v,Rd} = 24,17 \text{ kNm}$ $M_{z,Rd} = 24,17 \text{ kNm}$

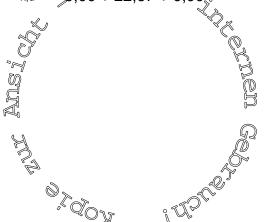
 $V_{y,Rd} = 16,85 \text{ kN}$ $V_{z,Rd} = 16,85 \text{ kN}$

7.3.2 Maximale Gurtkraft

Relevante Schnittgrößen (B14 – 2,145m – CO1/4):

 $N_{x,d} = 0,00 \text{ kN}$

 $M_{y,d} = 10,88 \text{ kNm}$


 $M_{z,d} = 0.00 \text{ kNm}$

Gurtkräfte:

 $\begin{array}{ll} \mbox{f\"ur } N_{x,d} \colon & N = 0.00 \ / \ 4 = & 0.00 \ kN \\ \mbox{f\"ur } M_{y,d} \colon & N = 10.88 \ / \ 0.24 \ / \ 2 = & 22.67 \ kN \\ \mbox{f\"ur } M_{z,d} \colon & N = 0.00 \ / \ 0.24 \ / \ 2 = & 0.00 \ kN \end{array}$

maximale Gurtkraft in einem der Gurtrohre:

 $\max N_{x,d} = 0.00 + 22.67 + 0.00 = 22.67 \text{ kN} < 35.71 \text{ kN}$

Projektname: Pos-3 Traversentragwerk

7.3.3 Maximale Quer-/ Strebenkraft

Torsion wirkt ebenso wie Querkraft auf die Streben. Sie wird als eine fiktive Querkraft zurückgerechnet.

Relevante Schnittgrößen (B13 – 0m – CO1/4):

 $V_{y,d} = 0,00 \text{ kN}$

 $V_{z,d} = 10,29 \text{ kN}$

 $M_{x,d} = 0,00 \text{ kNm}$

Querkraft aus Torsion:

für $M_{x,d}$: Vd (Mx,d) = 0.00 / 0.24 = 0.00 kN

maximale Querkraft in einer der Ebenen:

 $max V_d = 10,29 + 0,00 = 10,29 \text{ kN} < 16,85 \text{ kN}$

7.3.4 Maximale Knickbeanspruchung

Relevante Schnittgrößen (B5 – 0,95m – CO1/7):

 $N_{x,d} = -11,35 \text{ kN}$

 $M_{y,d} = 0.84 \text{ kNm}$

 $M_{z,d} = 3,77 \text{ kNm}$

$$L_{cr} = 2,22 * 4,60m = 10,21 m$$

 $e_{0,y} = e_{0,z} = L_{cr} / 500 = 0,02042 m$

$$N_{cr,y,d} = \pi^2 * E * I_{z,ges} / L_{cr}^2 = 117,39 \text{ kN}$$

 $N_{cr,z,d} = \pi^2 * E * I_{y,ges} / L_{cr}^2 = 117,39 \text{ kN}$

$$M_{2y,Ed} = (N * e_{0,y} + M_{1y}) / (1 - N / N_{cr} - N / S_v)$$

 $M_{2z,Ed} = (N * e_{0,z} + M_{1z}) / (1 - N / N_{cr} - N / S_v)$

Schnittgrößen zur Ermittlung der Knickbeanspruchung

 $N_{x,d} = -11,35 \text{ kN}$

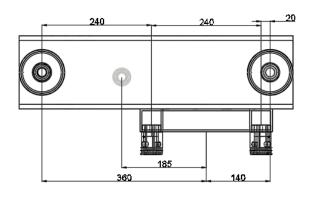
 $M_{2y,d} = 1,19 \text{ kNm}$

 $M_{2z,d} = 4,44 \text{ kNm}$

Gurtkräfte:

für $N_{x,d}$: N = 11,35 / 4 =für $M_{y,d}$: N = 1,19 / 0,24 / 2 =für $M_{z,d}$: N = 4,44 / 0,24 / 2 = 2,84 kN 2,48 kN 9,25 kN

maximale Gurtkraft in einem der Gurtrohre:


 $\max N_{x,d} = 2,84 + 2,48 + 9,25 =$

14,57 kN < 35,71 kN

Projektname: Pos-3 Traversentragwerk

7.4 Headsection FD34/HD34

5 50 80 240 Fmax

Profile: QRO

C-Profil Welle 60x60x4 160x80x10

_o d = 20mm

EN AW 6082 T6 oder gleichwertig EN AW 6082 T6 oder gleichwertig

10.9 oder gleichwertig

Welle Ø 20 mm – 10.9 oder gleichwertig

M_{Rd} = 106,03 kNcm F_{v,Rd} = 150,80 kN

 $F_{Rd} = 89,0 \text{ kN}$

F_{Rd} = 62,93 kN als z-Komponente für übergelegte Kette) maßgebend (lift)

 $_{2}M = 89,0 / 8 * (5,0 + 4 * 0,5 + 2 * 1,0) = 100,13 \text{ kNcm}$

V = 89.0 / 2 = 44.5 kN

 $\mathbb{P}(M) = 100,13 / 106,03 = 0,93 < 1,0$

 $\eta(V) = 44.5 / 150.8 = 0.30 < 1.0$

 $1NT: 0,94^{2} + 0.30^{2} = 0.97 \le 1.0$

2x C160x80x10 mm EN AW 6082 T6

Zweitrangig über die äußeren Bolzen (Wellen)

 $A = 30,0 \text{ cm}^2$; $A_z = 14,49 \text{ cm}^2$

 $W_v = 141,25 \text{ cm}^3$

 $M_{Rd} = 2 * 141,25 * 0,8 * 18,5 / 1,25 = 3344,8 \text{ kNcm} = 33,45 \text{ kNm}$

 $M = N_{Tower} / 2 * 33,45$

 $M_{Lift} = F/2 * 24,0 cm$

 $F_{Rd,Lift} = 3344.8 * 2 / 24.0 = 278.73 kN$

Profil 50x50x4 mm, EN-AW 6082 T6

 $A = 7,36 \text{ cm}^2$

 $W = 10,46 \text{ cm}^3$

WEZ: $M_{Rd} = 10,46 * 0,8 * 18,5 / 1,25 = 123,84 \text{ kNcm}$

M = F / 4 * 24,0

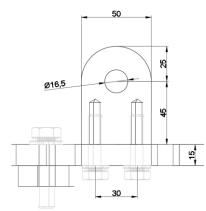
 $F_{Rd} = 4 * 123,84 / 24,0 = 20,63 kN$

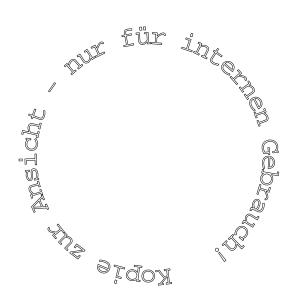
maßgebend

aus Tower: $F_{Ed} = N_{Ed,max} = 13,82 \text{ kN}$

 $\eta = 11,35 / 20,63 = 0,55 < 1,0$

Projektname: Pos-3 Traversentragwerk


7.5 Nachweis Diagonale FD34


FD34 über zwei Verbindert - Am Anschluss:

 $F_{Rd} = N_{Rd} = 142,842 = 71,42 \text{ kN}$

Anschluss an Boxcorner:

schematische Darstellung

2xLasche 50x70x15 mm - S235

Biegung:

 $W_{loc} = 2 * 1.5 * 5.0^2 / 6 = 12.5 \text{ cm}^3 \text{ (abzgl. Loch)}$

 $M_{Rd} = 12.5 * 23.5 / 1.0 = 293.75 \text{ kNcm}$

M = F * 4.5

 $F_{Rd} = 293,75 / 4,5 = 65,27 \text{ kN}$

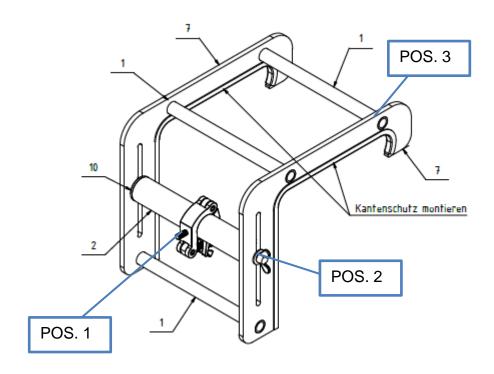
<u>2xBlech (gelasert) 290x90x15 mm – S235</u>

 $W_{loc} = 2 * 1,99 * 1,5^2 / 6 = 1,49 \text{ cm}^3 \text{ (abzgl. Loch)}$

 $M_{Rd} = 2 * 1,49 * 23,5 / 1,0 = 70,03 \text{ kNcm}$

M = F * 5.0

 $F_{Rd} = 70,03 / 5,0 = 14,06 \text{ kN} - \text{maßgebend (Last unter } \alpha = 90^{\circ} - \text{sichere Seite)}$


 $\eta = 6.39 / 14.06 = 0.45 < 1.0$

Projektname: Pos-3 Traversentragwerk

7.6 Truss Windbreaker (Riggatec)

Übersicht (schematische Darstellung)

Anbindung an LED-Wand – POS. 1

Verbinder: Riggatec Halbschelle WLL 300 kg

zul F = 3.0 kN

 $F_{Rd} = 3.0 * 1.35 = 4.05 \text{ kN}$

Rundrohr Ø50x2 - ENAW 6082 T6 oder gleichwertig:

 $L_{max} = 30,0 \text{ cm}$

 $A = 3,02 \text{ cm}^2$

 $I = 8.70 \text{ cm}^4$

i = 1,70 cm

 $W_{el} = 3,48 \text{ cm}^3$

 $M_{Rd} = 3,48 * 25,0 / 1,1 = 79,09 \text{ kNcm}$

 $<> M = F_{Rd} * 30,0 / 4$

 $F_{Rd} = 79,09 / 30,0 * 4 = 10,50 \text{ kN}$

Projektname: Pos-3 Traversentragwerk

Schraubverbindung - POS. 2

2 x Schraube M10x30 – 8.8 oder gleichwertig:

 $F_{Rd} = F_{v,Rd} = 22.3 \text{ kN (Gewinde in Fuge - sichere seite)}$

Lochleibung:

$$e4 \ge 3.0 * d_0$$

$$e3 = 4.5 \text{ cm} = 4.5 * d_0$$

$$\alpha_b$$
 = 3,0 / 3 = 1,0 für Langlöcher α_b = 0,66

$$k1 = 2.8 * 4.5 - 1.7 = 10.9 > 2.5$$

mit d = 1,0

Trägerbügel t = 10mm - EN AW 5754 H111

 $F_{b,Rd} = 2 * 0.65 * 2.5 * 0.66 * 19.0 * 1.0$

Trägerbügel - POS. 3

2x Blech h = 60 mm,.t = 19 mm - EN AW 5754 H111

 $W_{min} = 2 * 1.0 * 4.1^2 / 6 = 60 \text{ cm}^3 \text{ (abzgl. Loch)}$

WEZ:_Allgemeines Fließed

 $M_{o.Rd} = 5,60 * 8,0 / 1,1 = 40,75 \text{ kNcm}$

Örtliches Versagen WEZ:

 $M_{u,Rd} = 5,60 * 0,9 * 19,0 / 1,25 = 26,65 \text{ kNcm}$

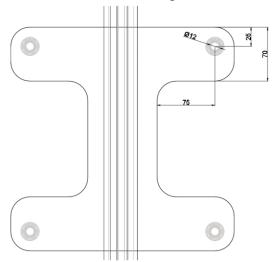
mit a = 25,0 cm

 $<> M = F_{Rd} * 25,0$

 $F_{Rd} = 40,75 / 25,0 = 1,63 \text{ kN}$ maßgebend

aus Wind:

 $F_{Ed.max} = 1.5 * 1.0 = 1.5 kN$


 $\eta = 1.5 / 1.63 = 0.92$

Projektname: Pos-3 Traversentragwerk

7.7 Spindelaufnahme

schematische Darstellung:

Blech (gelasert) 290x292x10 mm - S235

im Bereich der Lasche:

 $W_{loc} = 1.0 * 7.0^2 / 6 = 8.167 \text{ cm}^3$

 $M_{Rd} = 8,167 * 23,5 / 1,0 = 191,917 \text{ kNcm}$

M = F / 4 * 7.5

 $F_{Rd} = 191,917 * 4 / 7,5 = 102,0 \text{ kN}$

maßgebend

Lochleibung:

 $e1 = 2.5 \text{ cm} = 1.79 \text{ d}_0$

 $e2 = 2.5 \text{ cm} = 1.79 * d_0$

 $\alpha_b = 1,79 / 3 = 0,596$

k1 = 2.8 * 1.79 - 1.7 = 3.31 > 2.5

mit d = 1,2

F_{b,Rd} =4 * 2,5 * 0,596 * 36.0 * 1,2 * 1,0 / 1,25 = 205,98 kN

4xSchraube M12 -8.8

 $F_{v,Rd} = 4 32,4 = 129,6 \text{ kN}$

Schweißnaht konstruktiv beidseitig an Spindelhülse als Kehlnaht a ≥ 4 mm.

$$F_{Ed} = 22,25$$

$$\eta = 22,25 / 102,0 = 0,22 < 1,0$$

Projektname: Pos-3 Traversentragwerk

7.8 Spindeln

Maximale Auflagerkräfte: "MUL"

 $H_{res,d} = 5.51 \text{ kN}$ $R_{z,Ed} = 16.48 \text{ kN}$

Maximale Ausspindelhöhe für Layher Spinde 60

Spindeltyp

Fußspindel 60

	_	@ //
Herstel	lorono	idlen.
HEISTEI	ı c ıanı	പ്രവാദ്രവം

Α	3,84 [cm ⁴]	Material S	S235JRH
I	3,74 [cm⁴]	f C	28,0 [kN/cm ²]
W_{el}	2,61 [cm ³]	$\mathbb{N}_{pl,Rd}$	97,7 [kN]
W_{pl}	3,26 [cm ³]	$M_{pl,Rd}$	83,0 [kNcm]
i	0,99 [cm]	$V_{pl,Rd}$	36,0 [kN]

max. Spindelweg:

H _{Spindel}	8 cm	L_{cr}	16 cm
- Spillaei	• • • • • • • • • • • • • • • • • • • •	—CI	

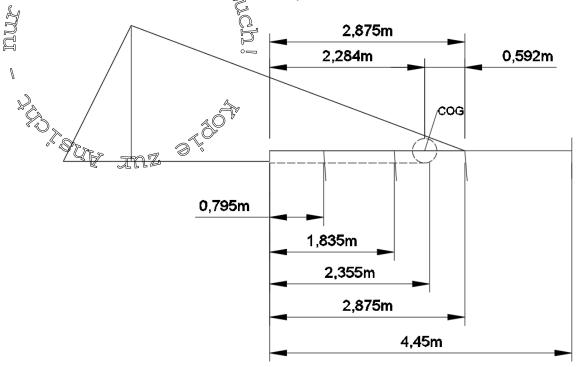
Einwirkungen:

1,50		
16,48 [kN]	$N_{x,Ed}$	24,72 [kN]
5,51 [kN]	H_{Ed}	8,27 [kN]
44,1 [kNcm]	$M_{Ed,0}$	66,1 [kNcm]
22,0 [kNcm]	$M_{Ed,0,5}$	33,1 [kNcm]
0,0 [kNcm]	$M_{\text{Ed},1}$	0,0 [kNcm]
	16,48 [kN] 5,51 [kN] 44,1 [kNcm] 22,0 [kNcm]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Biegeknicken:

λ_{quer}	0,19	α	0,49 (KL c)
χ	1,00	Φ	0,51
$N_{\text{bu,Rd}}$	97,7 [kN]	N_{Ed} / $N_{bu,Rd}$	0,25
C_{my}	0,9	C_{mLT}	0,6
k_{yy}	0,90	k_{zy}	0,54
\mathbf{k}_{max}	0,90	χιτ	1,0

Druck und Biegung kombiniert


$$N_{Ed} / N_{bu,Rd} + k_{yy} * M_{Ed} / M_{pl,Rd}$$
 0,97 < 1,0

Projektname: Pos-3 Traversentragwerk

7.9 Nachweis Hinge Aufbauphase

schematische Darstellur Aufbauphase:

Ermittlung des Massen-Schwerpunktes

je Stützen: E = 4,45 * 0,058 = 0,26 kN

je Windbraker E = 4.5 kg <> 0.045 kN

je Querträger: E = 4.3 * 0.058 = 0.25 kN

je Headsection: E = 12.0 kg <> 0.12 kN

Anschlagmittel Pauschal: E = 15 kg <> 0,15 kN je Stütze

$$E_{sum,1} = 4 * 0.045 + 0.25 = 0.43 \text{ kN}$$

 $E_{sum,2} = 0.43 \text{ kN}$

 $E_{sum,3} = 2 * (0.26 + 0.15) = 0.82 \text{ kN}$

 $E_{sum.4} = 0.43 \text{ kN}$

 $E_{sum.5} = 2 * 0.12 = 0.24 \text{ kN}$

Total: $G_{sum} = 3 * 0.43 + 0.82 + 0.24 = 2.35 \text{ kN}$

 $X_{COG} =$

(0.795 * 0.43 + 1.835 * 0.43 + 2.355 * 0.82 + 2.875 * 0.43 + 4.45 * 0.24) / 2.35 = 2.28

Drehpunkt: A= 2,35 * 0,592 / 2,875 = 0,484 kN

Seilanschlag B = 2,35 * 2,284 / 2,875 = 1,867 kN

Die Kette ist in der Aufbauphase am oberen (dritter Querträger von unten) am

Boxcorner anzuschlagen – Tower horizontal: α_{Seil} = 20,6°

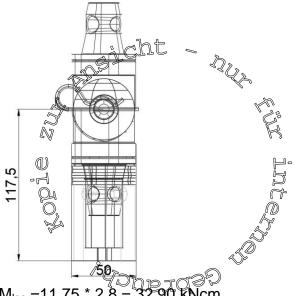
Je Kettenzug:

 $S_v = 1.867 / 2 = 0.934 \text{ kN}$

 $S_h = 0.934 / tan(20.6) = 2.485 kN$

$$S = (2,485^2 + 0,934^2)^{0.5} = 2,655 \text{ kN}$$

Projektname: Pos-3 Traversentragwerk


Bemessungsschnittgrößen an Hingeverbinder:

es wird auf der sicheren Seite eine dynamische Faktor von μ = 1,5 berücksichtigt

 $F_{v,Ed} = 1.5 * 1.5 * 0.484 / 2 / 2 Verbinder = 0.272 kN$

 $F_{h,Ed} = 1.5 * 1.5 * 2.485 / 2 Verbinder = 2.80 kN$

schematische Darstellung Verbinder:

 M_{loc} =11,75 * 2,8 = 32,90 kNcm Z/D = F_t = 32,90 / 2,35 = 14,0 kN

Schraube Scon M12 - 8.8 oder gleichwertig

 $F_{v,Rd} = 32,4 \text{ kN}$ (Gewinde in Fuge – sichere Seite)

 $F_{t,Rd} = 34,0 \text{ kN}$ (Senkkopf)

 $F_{v.Ed} = 0,272 \text{ kN}$

 $F_{t.Ed} = 14,0 \text{ kN}$

 $\eta = 0.272 / 32.4 = 0.01 < 0.4$

 $\eta = 14.0 / 34.0 = 0.41 < 1.0$

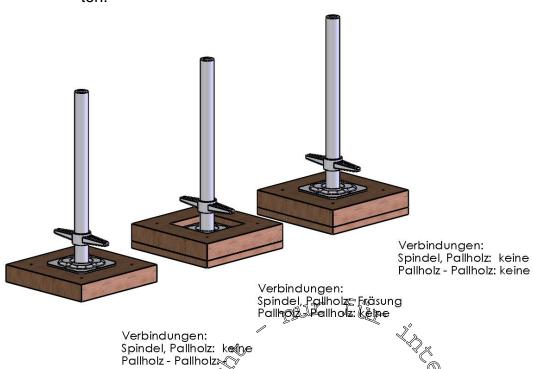
8 Nachweise der Lagesicherheit

8.1 Erläuterungen

Gemäß DIN EN 13814 werden die günstig wirkenden Eigenlasten mit einem Teilsicherheitsbeiwert von γ_f = 1,0 und, ungünstig wirkenden Windlasten mit γ_f = 1,2 und ungünstig wirkenden Verkehrslasten mit γ_f = 1,3 versehen.

Die Konstruktion wird durch nachfolgend dargestellte Weise gesichert. Alle Teile des Sockelunterbaus sind so mit dem Ballast zu verbinden, dass dieser gleichzeitig für <u>alle</u> denkbaren Lastrichtungen aktiviert werden kann.

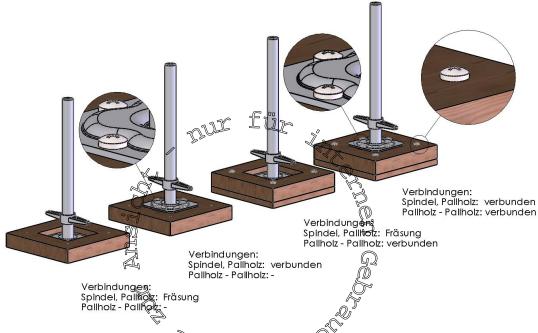
Erläuterung Reibbeiwert:



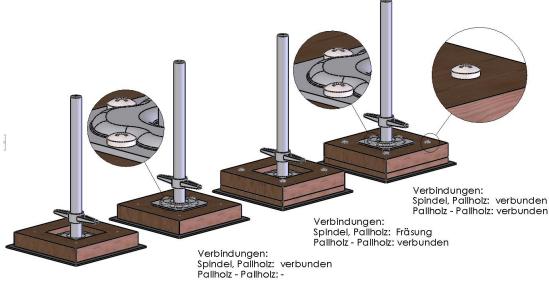
Projektname: Pos-3 Traversentragwerk

Entscheidend für die Verankerung mit Gewichtsankern (Ballast) ist die Ausführung der Unterpallung am jeweiligen Fußpunkt, hieraus ergibt sich der Reibbeiwert μ . Sowohl der Ballast, als auch die Fußpunkte der Konstruktion sind mit Holzunterpallungen zu versehen.

Das Einstellen des Reibbeiwertes wird im Folgenden erläutert. Hierbei wird die Umsetzung am **Beispiel einer Gerüstspindel** dargelegt und ist ggf. analog auf die betrachtete Konstruktion zu übertragen. Steht der Ballast nicht direkt auf der Konstruktion, muss dieser einen Beschlag nach gleichem Schema erhalten.


 μ = 0,4 Reibungsbeiwert für die Gleitfugen Holz-Holz und Stahl-Holz (auch anzuwenden, wenn mehrere Lagen Holzunterpallung gestapelt und <u>nicht</u> miteinander verbunden sind)
Die maximale Höhe der Unterpallung darf b/0,8 nicht überschreiten.

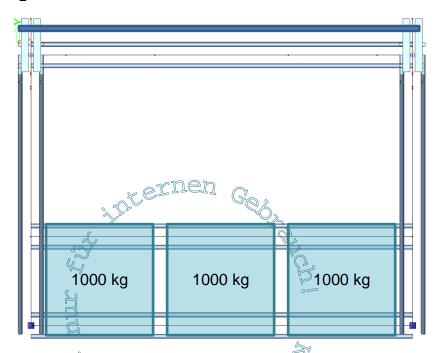
Reibungsbeiwert f
 ür die Gleitfuge Holz-Beton (anzuwenden, wenn der Ballast der die Spindel mit einer einlagigen oder mehrlagig verbundenen Holzunterpallung auf einer Beton oder Asphaltfläche aufsteht und der Ballast oder die Spindel jeweils konstruktiv mit der Unterpallung verbunden ist)
 Die maximale Höhe der Unterpallung darf b/1,2 nicht überschreiten.



Projektname: Pos-3 Traversentragwerk

μ = 0,9 Reibungsbei ver für die Gleitfüge Gummi-Beton (anzuwenden, wenn der Aufbau we für den Reibbeiwert μ = 0,6 erfolgt und zwischen der Unterpallung und dem Untergrund jeweils eine rutschhemmende Gummilage vorgesehen wird.
Die maximale Höhe der Unterpallung darf b/1.8 nicht überschrei-

Die maximale Höhe der Unterpallung darf b/1,8 nicht überschreiten.



Projektname: Pos-3 Traversentragwerk

8.1.1 Ballastierung gegen Abheben (Kippen)

Im Rahmen der EDV-Berechnung wurde die nachfolgend angegebene Ballastierung im System angesetzt.

Zur Kompensation der Abhebenden Kräfte und Verankerung der Konstruktion (Standsicherheit) ist die Ballastierung der hinteren Querträger notwendig:

Durch ausreichend gleichzeitig aufstehende Auflager ist das System rechnerisch stabil und daher nicht kippgefährdet.

Auf einen gesonderten Kippnachweis kann verzichtet werden.

resultierende Auflagerreaktionen, charakteristisch-Stabilität:

- keine abhebenden Kräfte in R_z-Richtung.
- Das System ist nicht Kippgefährdet.

Projektname: Pos-3 Traversentragwerk

8.1.2 Ballastierung gegen Gleiten

Je Basement-Verbund global betrachtet

maßgebend NC27:

 $R_{h,max} = 13,23 \text{ kN}$ $R_{z,global} = 37,97 \text{ kN}$

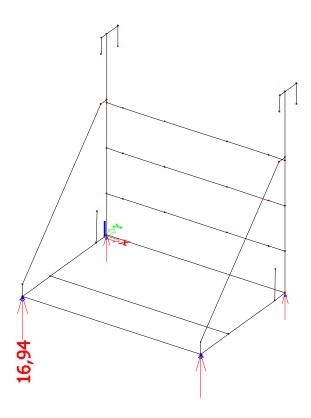
Es wird eine Reibbeiwert von $\mu = 0,4$ in Ansatz gebracht.

für $\mu = 0,4$:

$$\mu G_{k,ges} = \mu * F_n > H'$$

erf $F_n = 13,23 / 0,4 = 33,1 \text{ kN} < R_{z,\text{modal}} = 37,97 \text{ kN}$

Keine zusätzliche Ballastierung gegen Gleiten erforderlich


Ausreichend für Werkstoffpaarung Holz/Holz und Stahl/Holz Konstruktiv können Gummimatten untergelegt werden.

Projektname: Pos-3 Traversentragwerk

8.2 Lokale Bodenpressung

maximale Pressung (charakteristisch):

 $F_{k,max} = 16,94 \text{ kN}$

Z Y

Beispiel für eine Unterpallung mit Fußlatten (30x30x1,8cm) Die Spindel stehen auf Fußplatten mit 30 x 30 cm.

Auflagerpressung an Basisplatte:

 $A_B = 0.3 * 0.3 = 0.09 m^2$

 $p_{\text{res}} = 16,94 \% 0,09 = 188,2 \text{ kN/m}^2$

nach DIN EN 13814 für befahrbare Böden:

 $\sigma_{Rk} = 200 \text{ kN}\text{M}^2$

188,2 / 200,0 = 0,94 < 1,0

9 Schlussbemerkungen

Die Konstruktion wurde gemäß den derzeit gültigen Normen und Bestimmungen berechnet und für die im Kapitel "Lastannahmen" beschriebenen Belastungen als ausreichend tragfähig nachgewiesen, sofern die Anforderungen und Hinweise in diesem Dokument – insbesondere die in Kapitel 1 – beachtet werden.

Anlage zur Statischen Berechnung

- EDV-Ausgabe

Projekt-Nr.: 2021-0097 Auftraggeber: LEDitgo

Projekt: Pos. 3 Traversentragwerk

Bearbeiter: SR

Datum:

Expo Engineering GmbH Suerkamp 14 D-59302 Oelde

fon: +49 (0) 2520 931 62 - 0 fax: +49 (0) 2520 931 62 - 210 email: info@expo-engineering.de

Anlage zur Statischen Berechnung

EDV-Ausgabe

₩rojekt-Nr.:

2021-0097

Auttraggeber:

LEDitgo Projekt TOOMPos. 3 Traversentragwerk

Bearbeiter:

SR

Datum:

Expo Engineering GmbH Suerkamp 14 D-59302 Oelde

fon: +49 (0) 2520 931 62 - 0 fax: +49 (0) 2520 931 62 - 210 email: info@expo-engineering.de

2021-0097 Projekt-Nr.: Auftraggeber: LEDitgo

Pos. 3 Traversentragwerk Projekt:

Projekt: Pos. 3 Traversentragwerk

1. Inhaltsverzeichnis

1. Inhaltsverzeichnis		4
2. Projekt		6
3. Struktur		6
3.1. Querschnitte	- nuz	6
3.2. Material	- hiis	10
3.2. Material 3.3. Knoten 3.4. Stäbe 3.5. Gelenke		10
3.4. Stäbe	₹ %	11
3.5. Gelenke	L	12
3.6. Knotenauflager 🧞 "	% *	12
3.7. Analysemodel Kodennummerierun	ng name	13
3.8. Analysemodel Mabnummerierung	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13
4. Lasten		14
4.1. Lastfälle	()	
<u>Г</u>	(4)	14
4.1.1. Lastfälle E1		14
4.1.1.1. Darstellung Lasten 4.1.1.2. Resultierende	V-74	14
4.1.2. Resultierende 4.1.2. Lastfälle - E2		14 14
4.1.2. Lastralie - E2 4.1.2.1. Liniemast		14 15
4.1.2.1. Linieuwasi 4.1.2.2. Darstellung Lasten		15
4.1.2.3. Resultie@we	_	15
4.1.3. Lastfälle - E3		16
4.1.3.1. Darstellung tayen		16
4.1.3.1. Burstending Layering 4.1.3.2. Resultierende		16
4.1.4. Lastfälle - P1	\$ 11 17 \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	16
4.1.4. Lastralie - F1 4.1.4.1. Knotenlast	и – Г.	17
4.1.4.2. Einzellast auf Stab		17
4.1.4.3. Darstellung Lasten		17
4.1.4.4. Resultierende		18
4.1.5. Lastfälle - P2		18
4.1.5.1. Knotenlast		18
4.1.5.2. Darstellung Lasten		18
4.1.5.3. Resultierende		19
4.1.6. Lastfälle - W1		19
4.1.6.1. Knotenlast		19
4.1.6.2. Linienlast		19
4.1.6.3. Darstellung Lasten		20
4.1.6.4. Resultierende		20
4.1.7. Lastfälle - W2		20
4.1.7.1. Knotenlast		21
4.1.7.2. Linienlast		21
4.1.7.3. Darstellung Lasten		22
4.1.7.4. Resultierende		22
5. Kombinatorik	7	22
5.1. Lastfälle		22
5.2. Lastgruppen		23
5.3. Kombinationen		23
5.4. Nichtlineare LF-Kombinationen		24
5.5. Ergebnisklassen		24
5.6. Kombinationsvorschrift		24
6. Ergebnisse		24
6.1. 1D Teile - Schnittgrößen (CS)		2 4 24
6.1. 1D Teile - Schnittgrößen (CS) 6.1.1. 1D Teile - Schnittgrößen (CS)		24 24
6.1.1.1. Nx 6.1.1.2. Vy		25 26
6.1.1.2. Vy 6.1.1.3. Vz		26
6.1.1.4. Mx		20 27
6.1.1.5. My		27
6.1.1.6. Mz		28
6.1.2. 1D Teile - Schnittgrößen (CS)		28
6.1.2.1. Nx		29
6.1.2.2. Vy		29
6.1.2.3. Vz		30
6.1.2.4. Mx		30
6.1.2.5. My		31
6.1.2.6. Mz		31
6.1.3. 1D Teile - Schnittgrößen (CS)		32
6.1.3.1. Nx		32
6.1.3.2. Vy		33
6.1.3.3. Vz		33
6.1.3.4. Mx		34
6.1.3.5. My		34
6.1.3.6. Mz		35

Projekt: Pos. 3 Traversentragwerk

6.1.4. 1D Teile - Schnittgrößen (CS) - Headsection_Ersatzprofil	35
6.1.4.1. Nx	36
6.1.4.2. Vy	36
6.1.4.3. Vz	37
6.1.4.4. Mx	37
6.1.4.5. My	38
6.1.4.6. Mz	38
6.2. Reaktionen der Klassen	39
6.2.1. Reaktionen der Klass RC1	39
6.2.2. Reaktionen der Klassen - RC2	40
6.2.3. Reaktionen der Klassen - RC3	41
,	

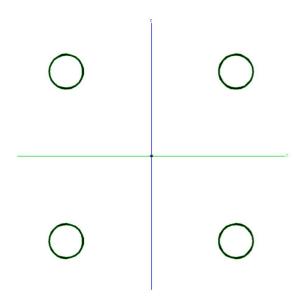
Projekt: Pos. 3 Traversentragwerk

2. Projekt

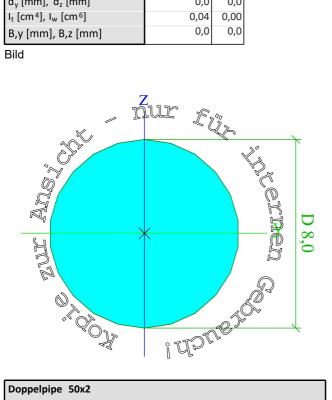
	1
Hewlett-Packard Company	
551266	
LEDitgo	
Pos. 3 Traversentragwerk Theh	
2021-0097	PZ
SR Split	1Q ₂
Allgemein XYZ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8 46	
32	, O, .
0	
0	0-
4	
7	
7	1 .
9,810	
EC-EN	1 40'
2021-0097 ESA POS-3 Traversentragwerk.esa	10
C:\Users\stefan. (barz \Projekte \LEDitgo \ 2021-0097 LED Mobil Picled3 POS3\02 Berechnungen \	
	LEDitgo Pos. 3 Traversentragwerk 2021-0097 SR Allgemein XYZ 46 32 0 47 7 7 9,810 EC-EN 2021-0097 ESA POS-3 Traversentragwerk.esa C:\Users\stefan

3. Struktur

3.1. Querschnitte


FD34		
Тур	Allgemeiner Querschnitt	
Stabformtyp	Dünnwandig	
Materialangabe	ALU-FD34	
Herstellung	allgemein	
A [cm ²]	12,06	
A _y [cm ²], A _z [cm ²]	12,06	12,06
I _y [cm ⁴], I _z [cm ⁴]	1771,61	1771,61
i _y [mm], i _z [mm]	121,2	121,2
W _{ely} [cm ³], W _{elz} [cm ³]	122,18	122,18
W _{ply} [cm ³], W _{plz} [cm ³]	144,74	144,74
M _{ply+} [kNcm], M _{ply-} [kNcm]	0,00	0,00
M _{plz+} [kNcm], M _{plz-} [kNcm]	0,00	0,00
d _y [mm], d _z [mm]	0,0	0,0
I _t [cm ⁴], I _w [cm ⁶]	603,20	0,00
B,y [mm], B,z [mm]	0,0	0,0

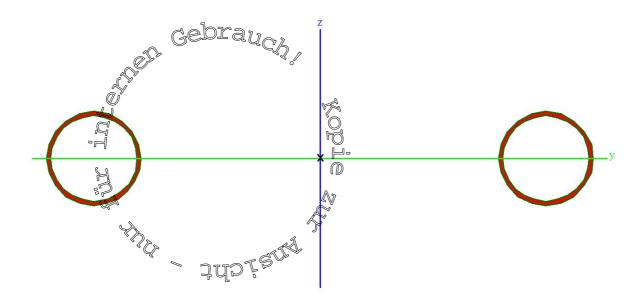
Bild


2021-0097 Projekt-Nr.: LEDitgo Auftraggeber:

Pos. 3 Traversentragwerk Projekt:

ST-Seil-8				
Тур	CIRC			
Detailliert	8,0			
Stabformtyp	Dickwandig			
Materialangabe	St-Seil			
Herstellung	allgemein			
A [cm ²]	0,50			
A _y [cm ²], A _z [cm ²]	0,43	0,43		
I _y [cm ⁴], I _z [cm ⁴]	0,02	0,02		
i _y [mm], i _z [mm]	2,0	2,0		
W _{ely} [cm ³], W _{elz} [cm ³]	0,05	0,05		
W _{ply} [cm ³], W _{plz} [cm ³]	0,09	0,09		
M _{ply+} [kNcm], M _{ply-} [kNcm]	0,00	0,00		
M _{plz+} [kNcm], M _{plz-} [kNcm]	0,00	0,00		
d _y [mm], d _z [mm]	0,0	0,0		
I _t [cm ⁴], I _w [cm ⁶]	0,04	0,00		
B,y [mm], B,z [mm]	0,0	0,0		

Bild


Doppelpipe 50x2

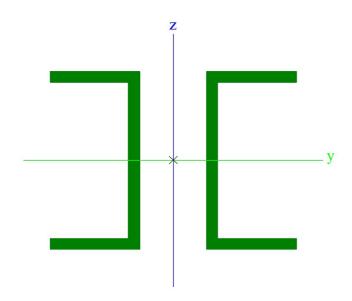
Projekt: Pos. 3 Traversentragwerk

Тур	Allgemeiner Querschnitt	
Stabformtyp	Dünnwandig	
Materialangabe	ALU	
Herstellung	allgemein	
A [cm ²]	6,03	
A _y [cm ²], A _z [cm ²]	6,03	6,03
I _y [cm ⁴], I _z [cm ⁴]	17,39	885,81
i _y [mm], i _z [mm]	17,0	121,2
W _{ely} [cm ³], W _{elz} [cm ³]	6,96	61,09
W _{ply} [cm ³], W _{plz} [cm ³]	9,22	72,37
M _{ply+} [kNcm], M _{ply-} [kNcm]	221,24	221,24
M _{plz+} [kNcm], M _{plz-} [kNcm]	1736,82	1736,82
d _y [mm], d _z [mm]	0,0	0,0
I _t [cm ⁴], I _w [cm ⁶]	0,04	0,00
B,y [mm], B,z [mm]	0,0	0,0

Bild

Headsection_Ersatzprofil			
Тур	Allgemeiner Querschnitt		
Stabformtyp	Dickwandig		
Materialangabe	EN-AW 6082 (DT) T6 (5-20)		
Herstellung	allgemein		
A [cm ²]	60,00		
A _y [cm ²], A _z [cm ²]	28,98	30,97	
I _y [cm ⁴], I _z [cm ⁴]	2260,00	2084,00	
i _y [mm], i _z [mm]	61,4	58,9	
W _{ely} [cm ³], W _{elz} [cm ³]	282,50	189,45	
W _{ply} [cm ³], W _{plz} [cm ³]	338,00	322,00	
M _{ply+} [kNcm], M _{ply-} [kNcm]	8112,00	8112,00	
M _{plz+} [kNcm], M _{plz-} [kNcm]	7728,00	7728,00	
d _y [mm], d _z [mm]	0,0	0,0	
I _t [cm ⁴], I _w [cm ⁶]	18,65	15269,92	
B,y [mm], B,z [mm]	0,0	0,0	

Bild



Projekt-Nr.: Auftraggeber:

2021-0097 LEDitgo

Projekt:

Pos. 3 Traversentragwerk

Erläute	erung von Symbolen
А	Bewehrungsmenge
A _y	Schubfläche in Hauptrichtung y - Eigenschaft durch Anwender bearbeitet
Az	Schubfläche in Hauptrichtung z - Eigenschaft durch Anwender bearbeitet
I _{YLCS}	Trägheitsmoment um die Achse YLCS
I _{ZLCS}	Trägheitsmoment um die Achse ZLCS
I _{YZLCS}	Gemischtes Trägheitsmoment im LCS
ly	Trägheitsmoment um die Hauptachse y
Iz	Trägheitsmoment um die Hauptachse z
i _y	Gyrationsrradius um die Hauptachse y
i _z	Gyrationsrradius um die Hauptachse z
W _{ely}	Elastischer Querschnittsmodul um die Hauptachse y
W _{elz}	Elastischer Querschnittsmodul um die Hauptachse z

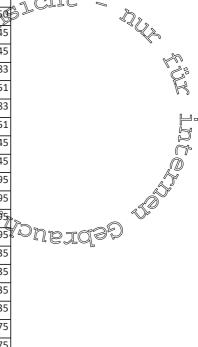
Erläute	erung von Symbolen
W _{ply}	Plastischer Querschnittsmodul um die Hauptachse y
W _{plz}	Plastischer Querschnittsmodul um die Hauptachse z
M _{ply+}	Plastischer Querschnittsmodul um die Hauptachse y für positive Momente My
M _{ply} -	Plastischer Querschnittsmodul um die Hauptachse y für negative Momentum My
M _{plz+}	Plastischer Querschnitt modul um die Hauptachse z für positive Momente Mz
M _{plz-}	Plastischer Querschoftsmodul um die Hauptachse z für regative Momente Mz
d _y	Koordinate des Schubmittelpunktes in Hauptrichtung y, Jemessen vom Schwerpunkt aus - Eigenschaft durch Anwender bearbeitet
d _z	Koordinate des Schubmittelpunktes in Hauptrichtung z, gemessen vom Schwerpunkt aus - Eigenschaft durch Anwender bearbeitet
It	Torsionskonstante - Eigenschaft durch Anwender bearbeitet
I _w	Verwölbungskonstante - Eigenschaft durch Anwender bearbeitet
В,у	Einfachsymmetrie-Konstante um die Hauptachse y
B,z	Einfachsymmetrie-Konstante um die Hauptachse z

Projekt: Pos. 3 Traversentragwerk

3.2. Material

Aluminium

Name Тур	Massendichte [kg/m³]	E-Mod [kN/cm²] G-Mod [kN/cm²]	Querdehnzahl T-Dehnzahl [m/mK]	Nachweisfestigkeit 0.2% (fo) [kN/cm²] Nachweisfestigkeit 0.2% (fo,haz) [kN/cm²] n-Wert für plastische Analyse (np)
EN-AW 6082 (DT) T6 (5-20)	2700,0	7,0000e+03	0.3	24,0
Aluminium		2,6923e+03	0,00	12,5
				17


MaterialB

Name Тур	E-Mod [kN/cm²] G-Mod [kN/cm²]	Querdehnzahl	Massendichte [kg/m³]
ALU-FD33 Allgemeines Material	7,0000e+03 2,6923e+03	0.3	4857,0
ALU-HD34 Allgemeines Material	7,0000e+03 2,6923e+03	0.3	4176,0
ALU-FD34 Allgemeines Material	7,0000e+03 2,6923e+03	0.3	4808,0
ALU-HD33 Allgemeines Material	7,0000e+03 2,6923e+03	0.3	4138,0
St-Seil Allgemeines Material	1,0000e+04 1,0000e+02	0.01	4400,0
ALU Allgemeines Material	7,0000e+03 2,6923e+03	0.3	2700,0

3.3. Knoten

Name	Koord.X [m]	Koord.Y [m]	Koord.Z [m]
N1	4,435	-0,145	4,750
N2	4,435	-0,145	3,175
N3	0,145	-0,145	4,750
N4	0,145	-0,145	3,175
N5	4,435	-0,145	2,135
N6	4,435	-0,145	1,095
N7	4,435	-0,145	0,145
N8	0,145	-0,145	2,135
N9	0,145	-0,145	1,095
N10	0,145	-0,145	0,145
N11	4,435	-2,184	0,145
N12	4,435	-3,184	0,145
N13	0,145	-2,184	0,145
N14	0,145	-3,184	0,145
N15	4,435	-0,365	3,245
N16	4,435	-3,184	0,422
N17	0,145	-0,365	3,245
N18	0,145	-3,184	0,422
N29	4,435	0,261	4,750
N30	4,435	0,266	4,274
N31	4,435	-0,335	4,750
N32	4,435	0,265	4,750

Name	Koord.X [m]	Koord.Y [m]	Koord.Z [m]
N33	0,145	0,261	4,750
N34	0,145	0,266	4,274
N35	0,145	-0,335	4,750
N36	0,145	0,265	4,750
N37	0,145	-0,526	145
N38	4,435	-0,526	0,145
N39	0,145	-0,35	4,383
N40	0,145	-0,49	0,851
N41	4,435	-0,250	4,383
N42	4,435	-0,497	0,851
N99	4,435	-0,1	3,245
N100	0,145	-0,145	3,245
N102	0,540	-0,148	1,095
N104	1,540	-0,145	1,095
N106	3,040	-0,145	1,0/95
N108	4,040	-0,145	1,095
N110	0,540	-0,145	2,135
N112	1,540	-0,145	2,135
N114	3,040	-0,145	2,135
N116	4,040	-0,145	2,135
N118	0,540	-0,145	3,175
N120	1,540	-0,145	3,175

Projekt: Pos. 3 Traversentragwerk

Name	Koord.X	Koord.Y	Koord.Z
	[m]	[m]	[m]
N122	3,040	-0,145	3,175

Nan	ne	Koord.X [m]	Koord.Y [m]	Koord.Z [m]
N124		4,040	-0,145	3,175

3.4. Stäbe

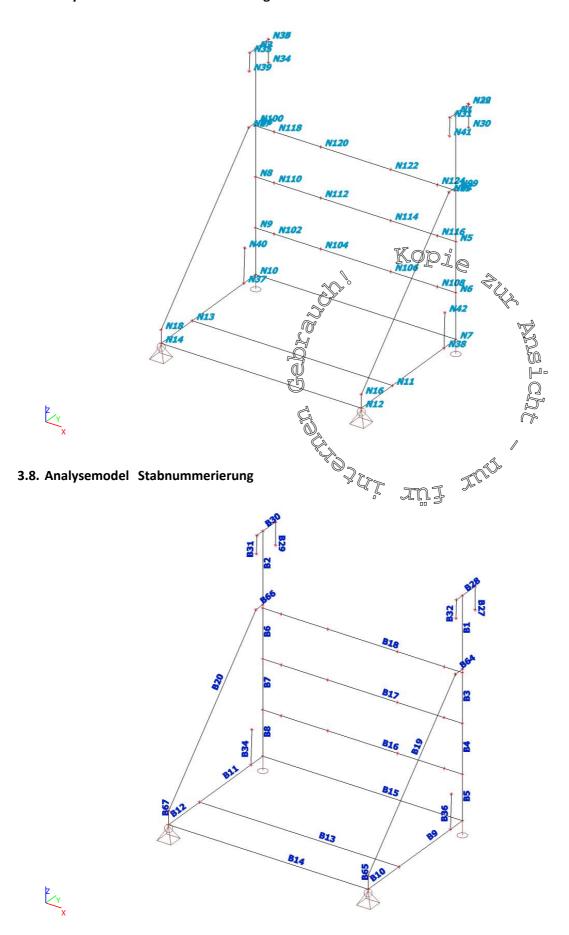
Name	Quetschnitt 17	Layer	Länge [m]	Form	Anf.Knoten	Тур
		Ž	[]		Endknoten	FEM-Typ
B1	FD34 - Allgemeiner Querschnitt	kayer1	1,575	Linie	N1	allgemein (0)
		- V			N2	Standard
B2	FD34 - Allgemeiner Querschnitt	Layer	1,575	Linie	N3	allgemein (0)
DZ		Layers	1,575	Lillie	N4	Standard
		- 5				
B3	FS34 - Allgemeiner Querschnitt	Layer	1,040	Linie	N2	allgemein (0)
		<u>Q</u>			N5	Standard
B4	FDS4 - Allgemeiner Querschnitt	Layer 12	1,040	Linie	N5	allgemein (0)
					N6	Standard
B5	FD34 Allgemeiner Querschnitt	Eaver1	0,950	Linie	N6	allgemein (0)
					N7	Standard
B6	FD34 - Allgemeiner Querschnitt	Layer1	1,040	Linie	N4	allgemein (0)
	Kobje S	,	_,-,		N8	Standard
B7	FD34 - Allgemeiner Querschnitt	Layer1	1,040	Linio	N8	allgemein (0)
Б/	FD34 - Aligemenier Querschnitt	Layeri	1,040	Lillie	N9	Standard
B8	FD34 - Allgemeiner Querschnitt	Layer1	0,950	Linie	N9	allgemein (0)
					N10	Standard
В9	FD34 - Allgemeiner Querschnitt	Layer1	2,039	Linie	N7	allgemein (0)
					N11	Standard
B10	FD34 - Allgemeiner Querschnitt	Layer1	1,000	Linie	N11	allgemein (0)
					N12	Standard
B11	FD34 - Allgemeiner Querschnitt	Layer1	2,039	Linia	N10	allgemein (0)
D11	7 Aligementer Quersonnite	Layeri	2,033	Lillic	N13	Standard
D42	5024 All 1 0 1 11		4.000			
B12	FD34 - Allgemeiner Querschnitt	Layer1	1,000	Linie	N13	allgemein (0)
					N14	Standard
B13	FD34 - Allgemeiner Querschnitt	Layer1	4,290	Linie	N11	allgemein (0)
					N13	Standard
B14	FD34 - Allgemeiner Querschnitt	Layer1	4,290	Linie	N12	allgemein (0)
					N14	Standard
B15	FD34 - Allgemeiner Querschnitt	Layer1	4,290	Linie	N7	allgemein (0)
	-				N10	Standard
B16	FD34 - Allgemeiner Querschnitt	Layer1	4,290	Linie	N6	allgemein (0)
510	1 23 1 7 Augentemen Quersonnite	Layers	1,230	Linic	N9	Standard
D17	FD34 - Allgemeiner Querschnitt	Lavor1	4,290	Linio	N5	allgemein (0)
B17	PD34 - Aligementer Querschilltt	Layer1	4,290	Linie	N8	Standard
B18	FD34 - Allgemeiner Querschnitt	Layer1	4,290	Linie	N2	allgemein (0)
					N4	Standard
B19	FD34 - Allgemeiner Querschnitt	Layer1	3,990	Linie	N15	allgemein (0)
					N16	Standard
B20	FD34 - Allgemeiner Querschnitt	Layer1	3,990	Linie	N17	allgemein (0)
					N18	Standard
B27	ST-Seil-8 - CIRC (8,0)	Layer1	0,476	Linie	N32	allgemein (0)
	,				N30	Standard
B28	Headsection_Ersatzprofil - Allgemeiner	Layer1	0,600	Linie	N31	allgemein (0)
520	Querschnitt	Luyeri	0,000	Linic		digerileiii (0)
					N32	Standard
D20	CT Coil 9 CIDC (9.0)	1 0 4	0.470	Limi-		1
B29	ST-Seil-8 - CIRC (8,0)	Layer1	0,476	Linie	N36	allgemein (0)
					N34	Standard
B30	Headsection_Ersatzprofil - Allgemeiner	Layer1	0,600	Linie	N35	allgemein (0)

Projekt: Pos. 3 Traversentragwerk

Name	Querschnitt	Layer	Länge	Form	Anf.Knoten	Тур
			[m]			
					Endknoten	FEM-Typ
	Querschnitt					
	-	na	0 7 ~ 5		N36	Standard
B31	ST-Seil-8 - CIRC (8,0)	Layer1	9,367	Unie	N35	allgemein (0)
	ST-Seil-8 - CIRC (8,0)		Ĩ		N39	Standard
B32	ST-Seil-8 - CIRC (8,0)	Layer1	0,367	Linie	N31	allgemein (0)
					N41	Standard
B34	ST-Seil-8 - CIRC (8,0)	Layer1	0,707	Linie	N40 1	allgemein (0)
					N3 🔭	Standard
B36	ST-Seil-8 - CIRC (8,0)	Layer1	0,707	Linie	N42	allgemein (0)
					N38	Standard
B64	Doppelpipe 50x2 - Allgemeiner Querschnitt	Layer1	0,220	Linie	N15	allgemein (0)
					N99 ³	Standard
B65	Doppelpipe 50x2 - Allgemeiner Querschnitt	Layer1	0,277	Linie	Ŋ/\$_2 ₀	allgemein (0)
	23			6	M 16	Standard
B66	Doppelpipe 50x2 - Allgemeiner Quersonnitt	Layer1	0,220	Linie	N17	allgemein (0)
	" OJA				N100	Standard
B67	Doppelpipe 50x2 - Allgemeiner Querschnitt	1 (e)1	U0,277	Linie	N14	allgemein (0)
					N18	Standard

3.5. Gelenke

Name	Stab	Position	ux	uy	uz	Phix	Phiy	Phiz
H1	B19	Beide	Starr	Starr	Starr	Starr	Frei	Frei
H2	B20	Beide	Starr	Starr	Starr	Starr	Frei	Frei

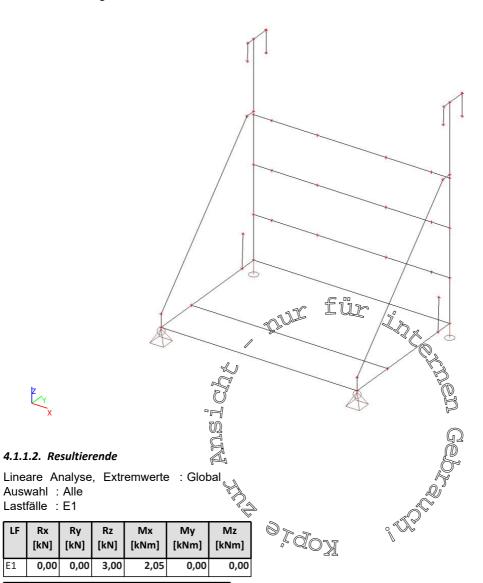

3.6. Knotenauflager

Name	Knoten	System	Тур	х	Υ	Z	Rx	Ry	Rz
Sn1	N14	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei
Sn2	N10	GKS	Standard	Frei	Frei	Starr	Frei	Frei	Frei
Sn3	N7	GKS	Standard	Frei	Frei	Starr	Frei	Frei	Frei
Sn4	N12	GKS	Standard	Starr	Starr	Starr	Frei	Frei	Frei

Projekt: Pos. 3 Traversentragwerk

3.7. Analysemodel Knotennummerierung

Projekt: Pos. 3 Traversentragwerk


4. Lasten

4.1. Lastfälle

4.1.1. Lastfälle - E1

Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Lastgruppe	Richtung
E1	Eigengewicht	Ständig	G	-Z
		Eigengewicht		

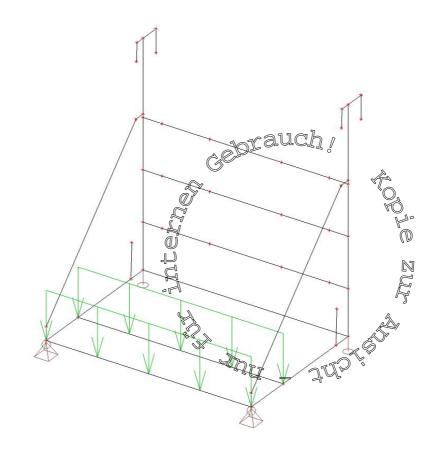
4.1.1.1. Darstellung Lasten

Zentralpunkt

·		
X [m]	Y [m]	Z [m]
2,290	-1,665	0,145

4.1.2. Lastfälle - E2

Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Lastgruppe
E2	Ballast	Ständig	G
		Standard	



Projekt: Pos. 3 Traversentragwerk

4.1.2.1. Linienlast

Name	Stab Lastfall	Typ System	Rich Verteilung	Wert - P ₁ [kN/m] Wert - P ₂ [kN/m]	Pos.x ₁	Koor Pos	Ursprung	Ausmitte ey [m] Ausmitte ez [m]
LF1	B13	Kraft	Z	-3,50	0.000	Relativ	Von Anfang	0,000
	E2 - Ballast	GKS	Konstant		1.000	Länge		0,000
LF2	B14	Kraft	Z	-3,50	0.000	Relativ	Von Anfang	0,000
	E2 - Ballast	GKS	Konstant		1.000	Länge		0,000

4.1.2.2. Darstellung Lasten

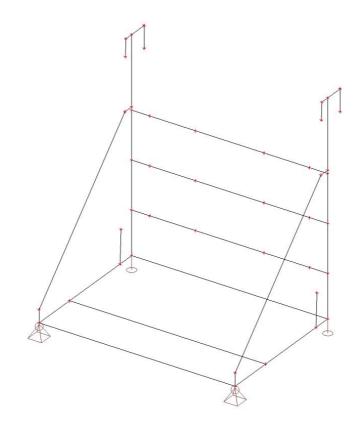
4.1.2.3. Resultierende

Lineare Analyse, Extremwerte : Global

Auswahl : Alle Lastfälle : E2

LF	Rx [kN]	•	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
E2	0,00	0,00	30,00	-30,58	0,00	0,00

Zentralpunkt					
X [m]	Y [m]	Z [m]			
2,290	-1,665	0,145			



Pos. 3 Traversentragwerk Projekt:

4.1.3. Lastfälle - E3

Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Lastgruppe
E3	Sonst.	Ständig	G
		Standard	

4.1.3.1. Darstellung Lasten

4.1.3.2. Resultierende

Lineare Analyse, Extremwerte: Global

Analyse Alle

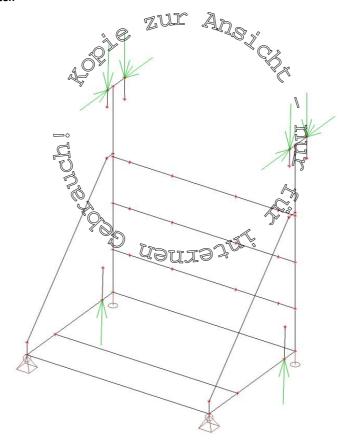
LF	Rx [kN]	Ry [kN]	Rz [kN]	[kivm]	My [kNm]	Mz [kNm]
E3	0,00	0,00	0,00	0,00	0,00	0,00

Zentralpunkt		
Х	Y	Z
[m]	[m]	[m]
2,290	-1,665	0,145
	*	

4.1.4. Lastfälle - P1

			750-	157 TM.	
Name	Beschreibung	Einwirkungstyp [®]	Lastgruppe	Dauer	Vorherrschender
					Lastfall
	Spez	Lasttyp			
P1	LED-Wand	Variabel	0	Kurz	Nein
			٩	IXGI Z	140111
	Standard	Statisch			

Projekt: Pos. 3 Traversentragwerk


4.1.4.1. Knotenlast

Name	Knoten	Lastfall	System	Rich	Тур	Winkel [deg]	Wert - F [kN]
F3	N35	P1 - LED-Wand	GKS	Υ	Kraft		2,57
F4	N31	P1 - LED-Wand	GKS	Υ	Kraft		2,57
F1	N32	P1 - LED-Wand	GKS	Υ	Kraft	Rz180,00	2,57
F5	N36	P1 - LED-Wand	GKS	Υ	Kraft	Rz180,00	2,57

4.1.4.2. Einzellast auf Stab

Name	Stab	System	Wert - F	Pos.x	Koor	Wieder (n)
	Lastfall	Rich	Тур		Ursprung	Gleichmäßig
Fb1	B27	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Anfang	
Fb2	B32	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Anfang	
Fb3	B31	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Anfang	
Fb4	B29	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Anfang	
Fb5	B34	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Ende	
Fb6	B36	LKS	2,57	0.000	Relativ	1
	P1 - LED-Wand	Х	Kraft		Von Ende	

4.1.4.3. Darstellung Lasten

Projekt: Pos. 3 Traversentragwerk

4.1.4.4. Resultierende

Lineare Analyse, Extremwerte : Global

Auswahl : Alle Lastfälle : P1

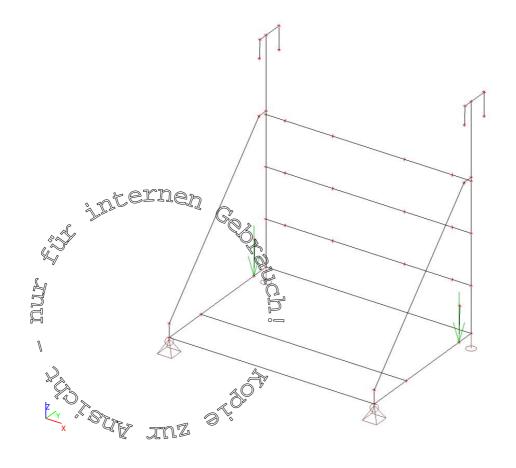
LF	Rx	Ry	Rz	Mx	My	Mz
	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
P1	0,00	-0,01	5,14	9,97	0,00	0,00

Zentralpunkt	·		
Х	Υ	Z	
[m]	[m]	[m]	

-1,665

4.1.5. Lastfälle - P2

2,290


Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Lastgruppe	Dauer	Vorherrschender Lastfall
P2	Kettenzüge	Variabel	Q	Kurz	Nein
	Standard	Statisch			

0,145

4.1.5.1. Knotenlast

Name	Knoten	Lastfall	System	Rich	Тур	Wert - F [kN]
F6	N38	P2 - Kettenzüge	GKS	Z	Kraft	-0,35
F7	N37	P2 - Kettenzüge	GKS	Z	Kraft	-0,35

4.1.5.2. Darstellung Lasten

Pos. 3 Traversentragwerk Projekt:

4.1.5.3. Resultierende

Lineare Analyse, Extremwerte : Global

Auswahl : Alle Lastfälle : P2

LF	Rx [kN]		Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
P2	0,00	0,00	0,70	0,80	0,00	0,00

Zentralpunkt

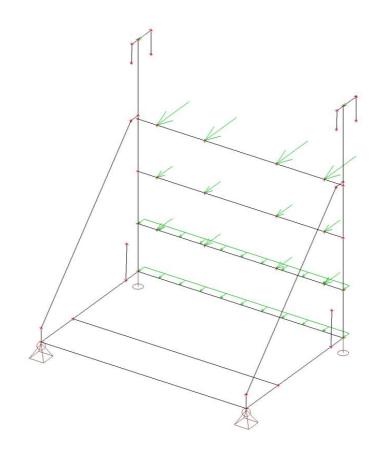
X	Y	Z
[m]	[m]	[m]
2,290	-1,665	0,145

4.1.6. Lastfälle - W1

4.1.6. Lastfälle - W1									
Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Last@puppe	Dauer	Vorherrschender Lastfall				
W1	Wind frontal Standard	Variabel Statisch	W.	Kurz	Nein				

4.1.6.1. Knotenlast

Name	Knoten	Lastfall	System	Rich	Тур	Winkel [deg]	Wert - F [kN]
F8	N122	W1 - Wind frontal	GKS	X.	Kraft	Rz180,00	1/00
F9	N124	W1 - Wind frontal	GKS	Y.	Kraft	Rz180,00	7,00
F10	N120	W1 - Wind frontal	GKS	Y 👸		Rz180.00	1,00
F11	N118	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	1,00
F12	N116	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F13	N108	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F14	N106	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F15	N114	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F16	N112	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F17	N110	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F18	N102	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F19	N104	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,50
F32	N1	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,25
F33	N3	W1 - Wind frontal	GKS	Υ	Kraft	Rz180,00	0,25


4.1.6.2. Linienlast

Name	Stab Lastfall	Typ System	Rich Verteilung	Wert - P ₁ [kN/m] Wert - P ₂ [kN/m]	Pos.x ₁	Koor Pos	Ursprung	Ausmitte ey [m] Ausmitte ez [m]
LF5	B16	Kraft	Υ	0,29	0.000	Relativ	Von Anfang	0,000
	W1 - Wind frontal	GKS	Konstant		1.000	Länge		0,000
LF6	B15	Kraft	Υ	0,29	0.000	Relativ	Von Anfang	0,000
	W1 - Wind frontal	GKS	Konstant		1.000	Länge		0,000

Projekt: Pos. 3 Traversentragwerk

4.1.6.3. Darstellung Lasten

4.1.6.4. Resultierende

Lineare Analyse, Extremwerte : Global

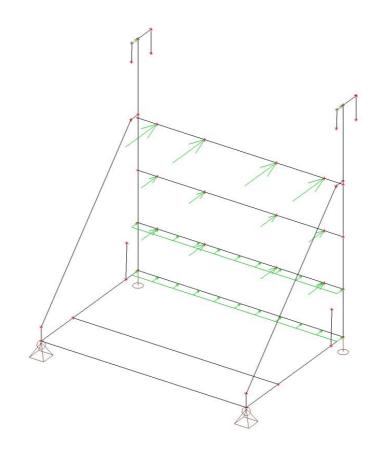
Auswahl : Alle Lastfälle : W1

LF	Rx [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]					
W1	0,00	11,01	0,00	-21,50	0,00		.e	> ,			
Zentralpunkt											
X Y Z [m] [m]											
	2,290 -1,655 0,145										
4.1.7	Lastf	älle - \	N2								
Nam	e B	eschreib	ung	Einwirk	ungstyp	Lastgru	ippe	Dauer	Vorherrschender		
	Spez			Lasttyp					L _a stfall		
W2		Wind von hinten		Variabel				Kurz	Neira		
	Stan	dard		Statisco	<u> </u>				*		
FIX INF											

Projekt: Pos. 3 Traversentragwerk

4.1.7.1. Knotenlast

Name	Knoten	Lastfall	System	Rich	Тур	Wert - F [kN]			
F20	N122	W2 - Wind von hinten	GKS	Υ	Kraft	1,00			
F21	N124	W2 - Wind von hinten	GKS	Υ	Kraft	1,00	1		
F22	N120	W2 - Wind von hinten	GKS	Υ	Kraft	1,00			
F23	N118	W2 - Wind von hinten	GKS	Υ	Kraft	1,00	1		
F24	N116	W2 - Wind von hinten	GKS	Υ	Kraft	0,50	1		
F25	N108	W2 - Wind von hinten	GKS	Υ	Kraft	0,50	1		
F26	N106	W2 - Wind von hinten	GKS~~~	yen	Kratt	0,50	1		
F27	N114	W2 - Wind von hinten	GE	Υ	Kraft	95,0			
F28	N112	W2 - Wind von hinten	GKS	Υ	Kraft	0,500			
F29	N110	W2 - Wind von hinten	GKS	Υ	Kraft	0,50			
F30	N102	W2 - Wind von hint/en	GKS	Υ	Kraft	0,50			
F31	N104	W2 - Wind von hinten	GKS	Υ	Kraft	0,50	1		
F34	N1	W2 - Wind von hinten	GKS	Υ	Kraft	0,25	1		
F35	N3	W2 - Wind von tinten	GKS	Υ	Kraft	0,25			
4.1.7.2. Linienlast									


4.1.7.2. Linienlast

Name	Stab Lastfall	Tyṗ̀ System	Rich Verteilung	Wert - P ₁ [kN/m] Wert - P ₂	Pos.x ₁	X oor Pos	Ursprung	Ausmitte ey [m] Ausmitte ez [m]
LF3	B16	Kraft	Υ	0,29	0.000	Relativ	Von Anfang	0,000
	W2 - Wind von hinten	GKS	Konstant		1.000	Länge		0,000
LF4	B15	Kraft	Υ	0,29	0.000	Relativ	Von Anfang	0,000
	W2 - Wind von hinten	GKS	Konstant		1.000	Länge		0,000

Projekt: Pos. 3 Traversentragwerk

4.1.7.3. Darstellung Lasten

4.1.7.4. Resultierende

Lineare Analyse, Extremwerte : Global

Auswahl : Alle Lastfälle : W2

LF	Rx [kN]	Ry [kN]		Mx [kNm]	Mx My [kNm] [kNm]	
W2	0,00	-11,01	0,00	21,50	0,00	0,00

Zentralpunkt		
X [m]	Q _Y Y Qm]	Z [m]
2,290	-1,665	0,145

5. Kombinatorik

5.1. Lastfälle

Name	Beschreibung Spez	Einwirkungstyp Lasttyp	Lastgruppe	Richtung	Dauer	Vorherrschender Lastfall
E1	Eigengewicht	Ständig Eigengewicht	G	-Z		
E2	Ballast	Ständig Standard	G			
E3	Sonst.	Ständig Standard	G			
P1	LED-Wand	Variabel	Q		Kurz	Nein

Projekt: Pos. 3 Traversentragwerk

Name	Beschreibung Einwirkungstyp Spez Lasttyp		Lastgruppe	Richtung	Dauer	Vorherrschender Lastfall
	Standard	Statisch				
P2	Kettenzüge Standard	Variabel Statisch	Q		Kurz	Nein
W1	Wind frontal Standard	Variabel Statisch	W		Kurz	Nein
W2	Wind von hinten Standard	Variabel Statisch	W		Kurz	Nein

5.2. Lastgruppen

Name Belastung		Status	Тур
G	Ständig		
Q	Variabel	Additiv	Kat.E: Lagerräume
W	Variabel	Exklusiv	Wind

5.3. Kombinationen

Name	Beschreibung	Тур	Lastfälle	Beiwert [-]
CO1	GZT	EN-GZT (STR/GEO) Gruppe B	E1 - Eigengewicht	1,00
			E2 - Ballast	1,00
			E3 - Sonst.	1,00
			P1 - LED-Wand	1,00
			P2 - Kettenzüge	1,00
			W1 - Wind frontal	1,00
			W2 - Wind von hinten	1,00
CO2	GZG	GZG - Umhüllende	E1 - Eigengewicht	1,00
			E2 - Ballast	1,00
			E3 - Sonst.	1,00
		n	P1 - LED-Wand	0,83
		inta	P2 - Kettenzüge	1,00
	F		W1 - Wind frontal	1,00
	» »	ir interpo	W2 - Wind von hinten	1,00
CO3	StS	GZG - Umhüllende	E1 - Eigengewicht	1,00
	Q		E2-Ballast	1,00
	ν		E3 Sonst.	1,00
			P1 D-Wand	0,83
			P2 - Kettenzüge	1,00
	اليا ا		W1 Wind frontal	1,20
			W2 Wind von hinten	1,20
CO7	, O,	GZG - linear	E1 igengewicht	1,00
			E2 Ballast	1,00
	W)		E3 - Sonst.	1,00
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		P1 - LED-Wand	0,83
			P2 - Kettenzüge	1,00
CO8	~	6762 linear JOD	E1 - Eigengewicht	1,00
			E2 - Ballast	1,00
			E3 - Sonst.	1,00
			P1 - LED-Wand	0,83
			P2 - Kettenzüge	1,00
			W1 - Wind frontal	1,20
CO9		GZG - linear	E1 - Eigengewicht	1,00
			E2 - Ballast	1,00
			E3 - Sonst.	1,00
			P1 - LED-Wand	0,83
			P2 - Kettenzüge	1,00
			W2 - Wind von hinten	1,20

Projekt: Pos. 3 Traversentragwerk

5.4. Nichtlineare LF-Kombinationen

Leere Tabelle

5.5. Ergebnisklassen

Name	Beschreibung	Liste
RC1	GZT	CO1 - EN-GZT (STR/GEO) Gruppe B
RC2	GZG	CO2 - GZG - Umhüllende
RC3	Standsicherheit	CO7 - GZG - linear
		CO8 - GZG - linear
		CO9 - GZG - linear

5.6. Kombinationsvorschrift

Kombinationsvorschrift

Name	Beschreibung der Kombinationen	
1	E1*1,00 +E2*1,00 +E3*1,00 +P1*0,83 +P2*1,00	
2	E1*1,00 +E2*1,00 +E3*1,00 +P1*0,83 +P2*1,00 +W1*1,20	
3	E1*1,00 +E2*1,00 +E3*1,00 +P1*0,83 +P2*1,00 +W2*1,20	
4	E1*1,35 +E2*1,35 +E3*1,35	
5	E1*1,10 +E2*1,10 +E3*1,10	
6	E1*1,35 +E2*1,35 +E3*1,35 +P2*1,35 +W1*1,35	0
7	E1*1,35 +E2*1,35 +E3*1,35 +P1*1,35 +P2*1,35 +W2*1,35	CARPICA
8	E1*1,35 +E2*1,35 +E3*1,35 +W2*1,35	
9	E1*1,10 +E2*1,10 +E3*1,10 +P1*1,35 +P2*1,35 +W1*1,35	رُهِ ا
10	E1*1,10 +E2*1,10 +E3*1,10 +P1*1,35 +P2*1,35 +W2*1,35	Ţ
11	E1*1,10 +E2*1,10 +E3*1,10 +W2*1,35	
12	E1*1,35 +E2*1,35 +E3*1,35 +W1*1,35	
13	E1*1,10 +E2*1,10 +E3 1,10 +W1*1,35	
14	E1*1,35 +E2*1,35 +E3*1,35 +P1*1,35 +P2*1,35	
15	E1*1,10 +E2*1,10 +E3*1,10 +P1*1,35 +P2*1,35	
16	E1*1,00 +E2*1,00 +E3*1,00 + 1.0,83 +P2*1,00 +W1*1,00	
17	E1*1,00 +E2*1,00 +E3*1,00 +W2*1,00	
18	E1*1,00 +E2*1,00 +E3*1,00 +P1*0,83 +P2*1,00 +W2*1,00	
19	E1*1,00 +E2*1,00 +E3*1,00 +W1*1,00	
20	E1*1,00 +E2*1,00 +E3*1,00 +P1*0,83 +P2*1,00	

6. Ergebnisse

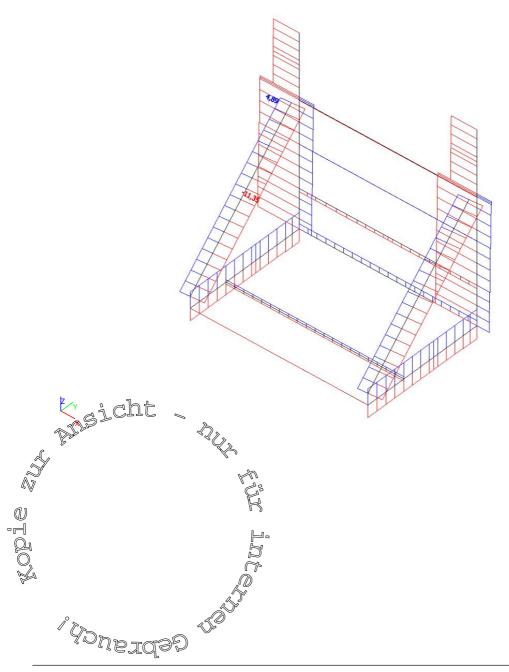
6.1. 1D Teile - Schnittgrößen (CS)

6.1.1. 1D Teile - Schnittgrößen (CS) - FD34

Name	Тур	Materialangabe	Herstellung	A [cm ²]	l _y [cm ⁴]
FD34	Allgemeiner Querschnitt	ALU-FD34	allgemein	12,06	1771,61

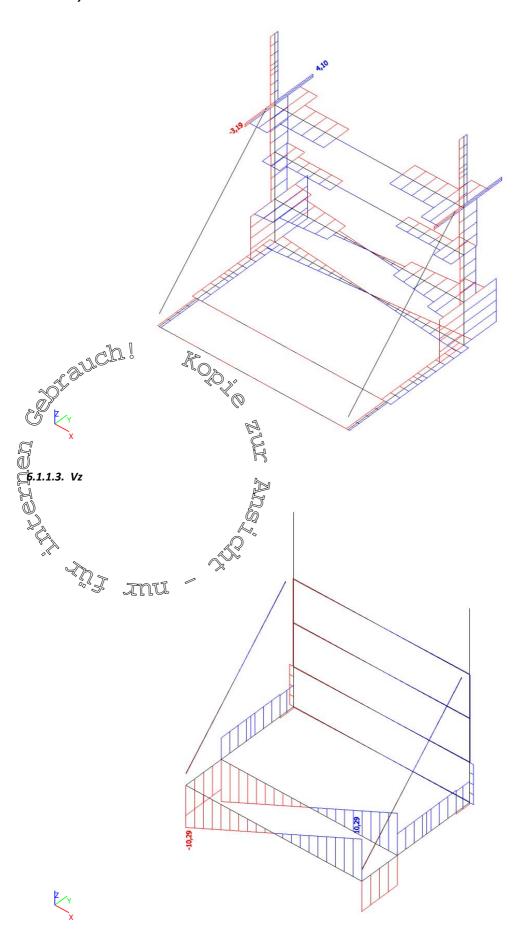
Lineare Analyse, Extremwerte : Querschnitt, System : Hauptsystem

Auswahl : Alle LFK-Klasse : RC1

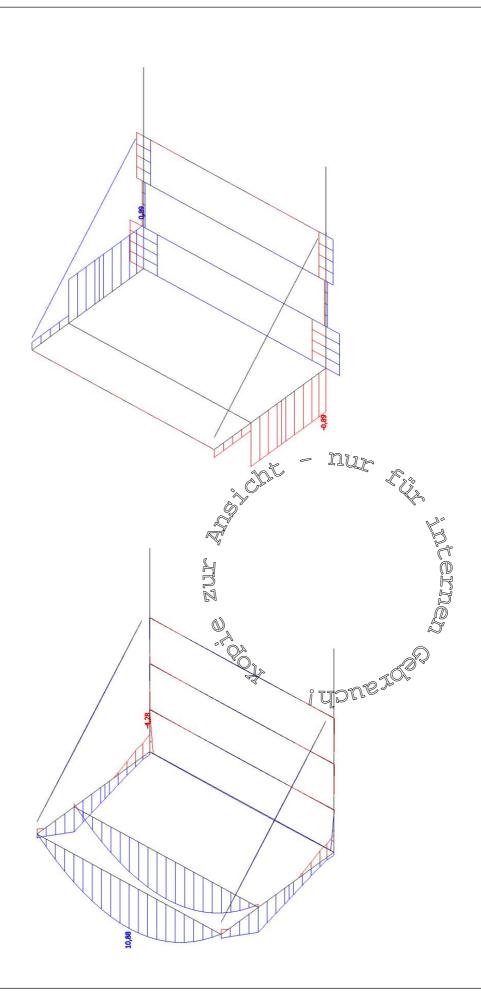

Querschnitt : FD34 - Allgemeiner Querschnitt

Projekt: Pos. 3 Traversentragwerk

Teil	css	dx [m]	LF	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
B8	FD34 - Allgemeiner Querschnitt	0,950	CO1/7	-11,35	3,18	-0,94	-0,28	-0,84	3,77
B20	FD34 - Allgemeiner Querschnitt	0,000	CO1/10	4,89	0,00	0,09	0,00	0,00	0,00
B2	FD34 - Allgemeiner Querschnitt	1,505	CO1/10	-10,67	-3,19	0,00	0,00	0,00	0,30
B2	FD34 - Allgemeiner Querschnitt	1,505	CO1/12	4,04	4,10	0,00	0,00	0,00	0,45
B13	FD34 - Allgemeiner Querschnitt	4,290	CO1/4	0,03	0,00	-10,29	0,00	-0,73	0,00
B13	FD34 - Allgemeiner Querschnitt	0,000	CO1/4	0,03	0,00	10,29	0,00	-0,73	0,00
В9	FD34 - Allgemeiner Querschnitt	0,000	CO1/12	-3,00	0,44	3,17	-0,89	-0,20	-0,70
B11	FD34 - Allgemeiner Querschnitt	0,000	CO1/6	-3,33	-0,44	0,40	0,89	0,31	0,70
B11	FD34 - Allgemeiner Querschnitt	0,000	CO1/8	4,36	0,42	5,19	0,89	-4,28	-0,68
B14	FD34 - Allgemeiner Querschnitt	2,145	CO1/8	0,00	0,00	0,00	0,00	10,88	0,00
B18	FD34 - Allgemeiner Querschnitt	1,395	CO1/13	-0,10	-1,35	0,05	0,00	0,04	-2,27
B8	FD34 - Allgemeiner Querschnitt	0,950	CO1/8	-4,22	3,51	-0,94	-0,28	-0,84	4,28

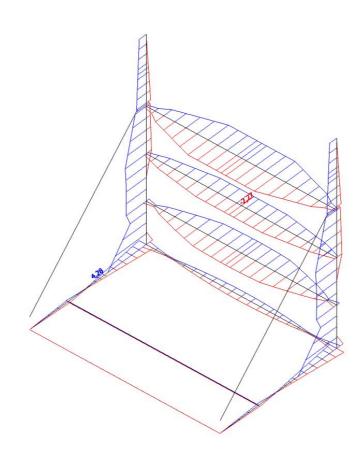

6.1.1.1. Nx

Projekt: Pos. 3 Traversentragwerk


6.1.1.2. Vy

Projekt: Pos. 3 Traversentragwerk

6.1.1.4. Mx


6.1.1.5. My

Projekt-Nr.: 2021-0097 LEDitgo Auftraggeber:

Pos. 3 Traversentragwerk Projekt:

6.1.1.6. Mz

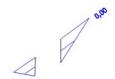
6.1.2. 1D Teile - Schnittgrößen (CS) - ST-Seil-8

Name	Тур	Detailliert	Materialangabe	Herstellung	A [cm²]	I _y [cm ⁴]
ST-Seil-8	CIRC	8,0	St-Seil	allgemein	0,50	0,02

Lineare Analyse, Extremwerte : Querschnitt, System : Hauptsystem Auswahl : Alle LFK-Klasse : RCA

Querschnitt: ST-Seil-8 - CIRC (8,0)

	\sim				73	ightharpoonup			
Teil	ess,	dx	LF	N	Vy	`Oz	Mx	My	Mz
	Z.	[m]		[kN]	[kN]		[kNm]	[kNm]	[kNm]
B34	ST-Sen 8 - CIRC	0,707	CO1/4	0,00	0,00	0,00	0,00	0,00	0,00
B27	ST-Sell-8 - CIRC	0,000	CO1/4	0,00	0,00	0,00	0,00	0,00	0,00
B27	ST-SELL8 - CIRC	0,000	CO1/6	0,00	0,00	0,00	0,00	0,00	0,00
B27	ST-Seil-8 - CIRC	0,000	CO1/10	0,00	0,00	0,00	0,00	0,00	0,00
B31	ST-Seil-8 - CIRC	0,000	CO1/4	0,00	0,00	0,00	0,00	0,00	0,00
		mu		ŢŢĒ		\$			

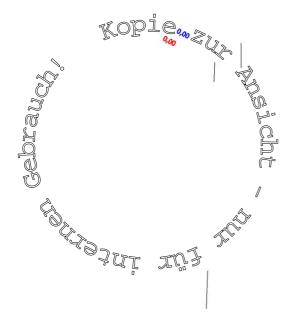


Projekt-Nr.: Auftraggeber:

: 2021-0097 er: LEDitgo

Projekt: Pos. 3 Traversentragwerk

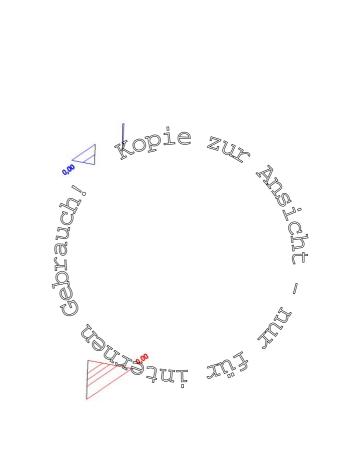
6.1.2.1. Nx



6.1.2.2. Vy

Projekt-Nr.:

2021-0097 Auftraggeber: LEDitgo


Projekt:

Pos. 3 Traversentragwerk

6.1.2.3. Vz

6.1.2.4. Mx

Projekt-Nr.: 2021-0097

Auftraggeber:

LEDitgo

Projekt: Pos. 3 Traversentragwerk

6.1.2.5. My

< o'ao

A

Ż Y X

6.1.2.6. Mz

The same of the sa

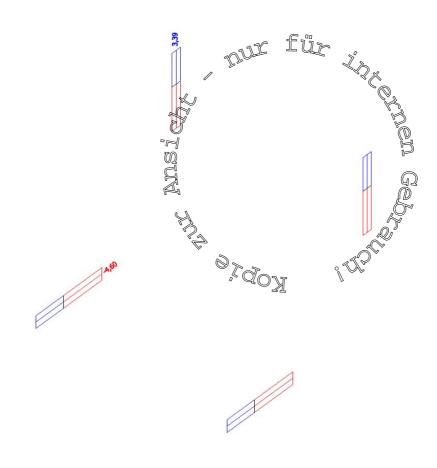
k Y A

31/42

Projekt: Pos. 3 Traversentragwerk

6.1.3. 1D Teile - Schnittgrößen (CS) - Doppelpipe 50x2

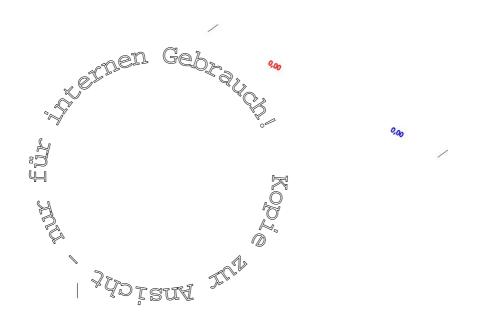
Name	Тур	Materialangabe	Herstellung	A [cm²]	l _γ [cm ⁴]
Doppelpipe 50x2	Allgemeiner Querschnitt	ALU	allgemein	6,03	17,39

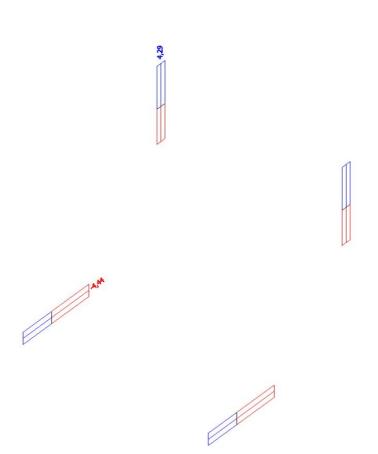

Lineare Analyse, Extremwerte : Querschnitt, System : Hauptsystem

Auswahl : Alle LFK-Klasse : RC1

Querschnitt : Doppelpipe 50x2 - Allgemeiner Querschnitt

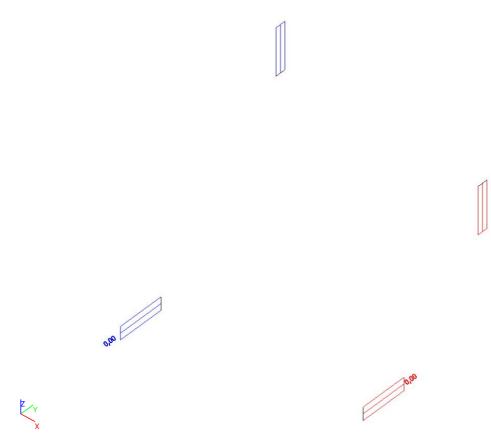
Teil	css	dx [m]	LF	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
B67	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/12	-4,60	0,00	-4,44	0,00	1,23	0,00
B66	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/10	3,39	0,00	-3,52	0,00	0,00	0,00
B64	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/9	-4,12	0,00	4,00	0,00	0,00	0,00
B64	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/4	-0,68	0,00	0,53	0,00	0,00	0,00
B66	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/12	-4,44	0,00	4,29	0,00	0,00	0,00
B65	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/6	-4,41	0,00	-4,24	0,00	1,17	0,00
B67	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/10	3,27	0,00	3,39	0,00	-0,94	0,00
B64	Doppelpipe 50x2 - Allgemeiner Querschnitt	0,000	CO1/6	-4,24	0,00	4,10	0,00	0,00	0,00

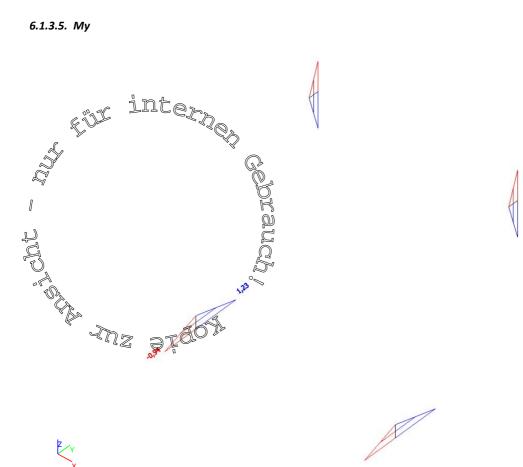

6.1.3.1. Nx


Projekt: Pos. 3 Traversentragwerk

6.1.3.2. Vy

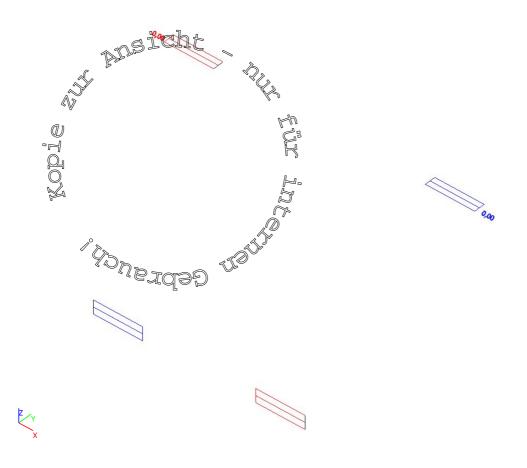
E_V


6.1.3.3. Vz



Projekt: Pos. 3 Traversentragwerk

6.1.3.4. Mx



Projekt: Pos. 3 Traversentragwerk

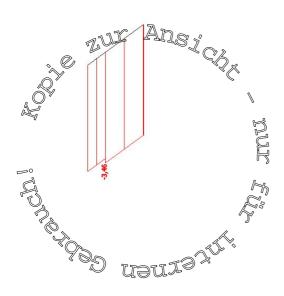
6.1.3.6. Mz

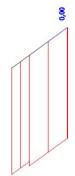
6.1.4. 1D Teile - Schnittgrößen (CS) - Headsection_Ersatzprofil

Nan	ne	Тур	Materialangabe	Herstellung	A [cm²]	l _y [cm ⁴]
Headsection_E	rsatzprofil	Allgemeiner Querschnitt	EN-AW 6082 (DT) T6 (5-20)	allgemein	60,00	2260,00

Lineare Analyse, Extremwerte : Querschnitt, System : Hauptsystem

Auswahl : Alle LFK-Klasse : RC1


Querschnitt : Headsection_Ersatzprofil - Allgemeiner Querschnitt

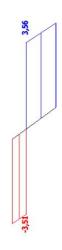

Teil	CSS	dx [m]	LF	N [kN]	Vy [kN]	Vz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,190	CO1/6	-3,46	0,00	3,56	0,00	-1,44	0,00
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,596	CO1/8	0,00	0,00	0,00	0,00	0,00	0,00
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,596	CO1/10	-3,46	0,00	3,47	0,00	-0,01	0,00
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,190	CO1/9	-3,46	0,00	3,54	0,00	-1,44	0,00
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,190	CO1/7	-3,33	0,00	-3,51	0,00	-0,66	0,00
B28	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,000	CO1/7	-3,33	0,00	-3,47	0,00	0,00	0,00
B30	Headsection_Ersatzprofil - Allgemeiner Querschnitt	0,190	CO1/6	-3,46	0,00	3,56	0,00	-1,44	0,00

Projekt: Pos. 3 Traversentragwerk

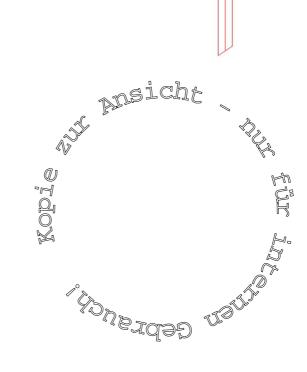
6.1.4.1. Nx

C,

6.1.4.2. Vy


0,00

Projekt: Pos. 3 Traversentragwerk


6.1.4.3. Vz

6.1.4.4. Mx

000

Projekt: Pos. 3 Traversentragwerk

6.1.4.5. My

6.1.4.6. Mz

0,00

Projekt: Pos. 3 Traversentragwerk

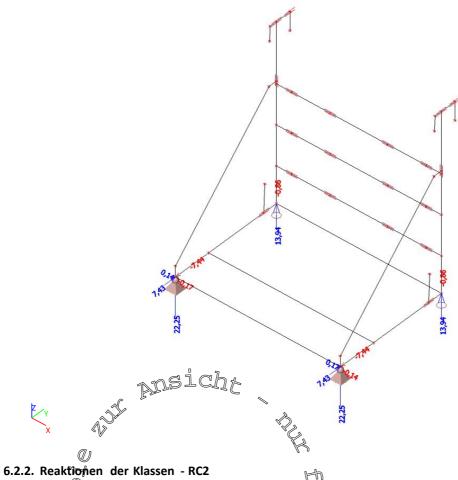
6.2. Reaktionen der Klassen

6.2.1. Reaktionen der Klassen - RC1

Name	Beschreibung	Liste
RC1	GZT	CO1 - EN-GZT (STR/GEO) Gruppe B

Lineare Analyse, Extremwerte : Knoten

Auswahl : Alle LFK-Klasse : RC1


Auflager	LF	Rx [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Sn1/N14	CO1/6	-0,17	7,43	21,83	0,00	0,00	0,00
Sn1/N14	CO1/11	0,14	-7,43	9,46	0,00	0,00	0,00
Sn1/N14	CO1/7	0,14	-7,44	12,28	0,00	,000	0,00
Sn1/N14	CO1/12	-0,17	7,43	22,25	0,00	Q ,00	0,00
Sn1/N14	CO1/10	0,14	-7,44	9,05	0,00	0,00	0,00
Sn1/N14	CO1/4	-0,01	0,00	17,48	0,00	0,00	0,00
Sn2/N10	CO1/4	0,00	0,00	4,80	0,00	_∘ 0,00	0,00
Sn2/N10	CO1/13	0,00	0,00	-0,86	0,00	<u></u> 0,00	0,00
Sn2/N10	CO1/7	0,00	0,00	13,94	0,00	00,00	0,00
Sn3/N7	CO1/4	0,00	0,00	4,80	0,00	6,00	0,00
Sn3/N7	CO1/13	0,00	0,00	-0,86	0,00	0,00	0,00
Sn3/N7	CO1/7	0,00	0,00	13,94	0,00	0,00	00.00
Sn4/N12	CO1/10	-0,14	-7,44	9,05	0,00	0,00	0,00
Sn4/N12	CO1/12	0,17	7,43	22,25	0,00	0,00	0,00
Sn4/N12	CO1/7	-0,14	-7,44	12,28	0,00	0,00	0,00
Sn4/N12	CO1/4	0,01	0,00	17,48	0,00	0,00	0,00

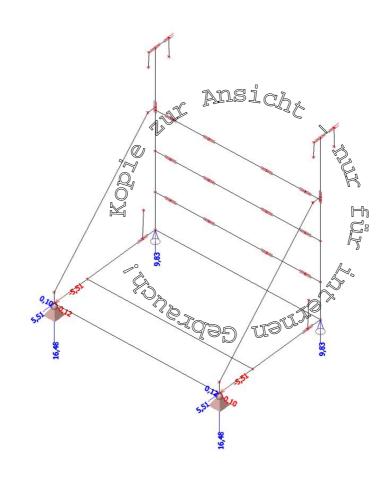
TUE Ansiche

2021-0097 Projekt-Nr.: Auftraggeber: LEDitgo

Projekt: Pos. 3 Traversentragwerk

Name	Beschreibung	Liste
RC2	GZG 🎇	CO2 - GZG - Umhüllende

Lineare Analyse, Extremwerte : Knoten


Auswahl: Alle

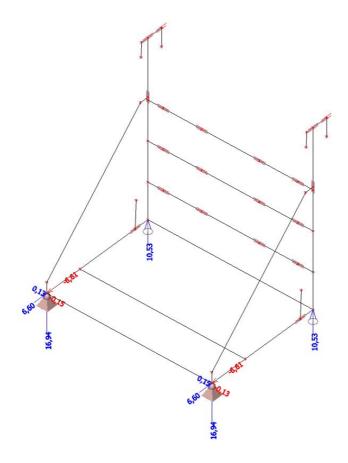
LFK-Klasse : RC2

						RIP .	
Auflager	LF	R*() [kN]	RY [kNJC	Rz	Mx [kNm]	My [kNm]	Mz [kNm]
Sn1/N14	CO2/16	-0,12	5,50	16,23	0,00	0,00	0,00
Sn1/N14	CO2/17	0,10	-5,51	9,41	0,00	0,00	0,00
Sn1/N14	CO2/18	0,10	-5,51	9,16	0,00	0,00	0,00
Sn1/N14	CO2/19	-0,12	5,51	16,48	0,00	0,00	0,00
Sn1/N14	CO2/20	-0,01	0,00	12,69	0,00	0,00	0,00
Sn2/N10	CO2/20	0,00	0,00	6,30	0,00	0,00	0,00
Sn2/N10	CO2/19	0,00	0,00	0,02	0,00	0,00	0,00
Sn2/N10	CO2/18	0,00	0,00	9,83	0,00	0,00	0,00
Sn3/N7	CO2/20	0,00	0,00	6,30	0,00	0,00	0,00
Sn3/N7	CO2/19	0,00	0,00	0,02	0,00	0,00	0,00
Sn3/N7	CO2/18	0,00	0,00	9,83	0,00	0,00	0,00
Sn4/N12	CO2/18	-0,10	-5,51	9,16	0,00	0,00	0,00
Sn4/N12	CO2/19	0,12	5,51	16,48	0,00	0,00	0,00
Sn4/N12	CO2/20	0,01	0,00	12,69	0,00	0,00	0,00

Projekt: Pos. 3 Traversentragwerk

6.2.3. Reaktionen der Klassen - RC3

Name	Beschreibung	Liste
RC3	Standsicherheit	CO7 - GZG - linear
		CO8 - GZG - linear
		CO9 - GZG - linear


Lineare Analyse, Extremwerte : Knoten

Auswahl : Alle LFK-Klasse : RC3

Auflager	LF	Rx [kN]	Ry [kN]	Rz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Sn1/N14	CO8/2	-0,15	6,60	16,94	0,00	0,00	0,00
Sn1/N14	CO9/3	0,13	-6,61	8,45	0,00	0,00	0,00
Sn1/N14	CO7/1	-0,01	0,00	12,69	0,00	0,00	0,00
Sn2/N10	CO7/1	0,00	0,00	6,29	0,00	0,00	0,00
Sn2/N10	CO8/2	0,00	0,00	2,05	0,00	0,00	0,00
Sn2/N10	CO9/3	0,00	0,00	10,53	0,00	0,00	0,00
Sn3/N7	CO7/1	0,00	0,00	6,29	0,00	0,00	0,00
Sn3/N7	CO8/2	0,00	0,00	2,05	0,00	0,00	0,00
Sn3/N7	CO9/3	0,00	0,00	10,53	0,00	0,00	0,00
Sn4/N12	CO9/3	-0,13	-6,61	8,45	0,00	0,00	0,00
Sn4/N12	CO8/2	0,15	6,60	16,94	0,00	0,00	0,00
Sn4/N12	CO7/1	0,01	0,00	12,69	0,00	0,00	0,00

Projekt: Pos. 3 Traversentragwerk

Z_Y

internen Goden